Math 280Y: Arithmetic Statistics

Spring 2023

Problem set #7

due Sunday, April 30 at 10pm

Problem 1. Consider the trivial cubic extension $S = \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ of \mathbb{Z} . Find all cubic subextensions $S' \subset S$ of \mathbb{Z} of index $[S : S'] \in \{p, p^2, p^3\}$, where p is prime.

Hint: Use the appropriate normal form

Problem 2. For any cubic form $f \in \mathcal{V}(\mathbb{Z}_p)$, let $\omega_p(f)$ be the number of roots of f in $\mathbb{P}^1(\mathbb{F}_p)$. Show:

$$\sum_{\substack{[f]\in \operatorname{GL}_2(\mathbb{Z})\setminus\mathcal{V}(\mathbb{Z}_p)\\\operatorname{disc}(f)=T\\f\notin\mathcal{V}^m(\mathbb{Z}_p)}} 1 = \sum_{\substack{[f]\in \operatorname{GL}_2(\mathbb{Z})\setminus\mathcal{V}(\mathbb{Z}_p)\\\operatorname{disc}(f)=T/p^2}} \omega_p(f) - \sum_{\substack{[f]\in \operatorname{GL}_2(\mathbb{Z})\setminus\mathcal{V}(\mathbb{Z}_p)\\\operatorname{disc}(f)=T/p^4}} (\omega_p(f)-1)$$

Problem 3. Let $n \ge 2$ be prime. Show that there is a constant C > 0 such that

#{L Galois extension of \mathbb{Q} with Galois group $C_n \mid |\operatorname{disc}(L)| \leq T$ } ~ $C \cdot T^{1/(n-1)}$

for $T \to \infty$.