Math 280Y: Arithmetic Statistics Spring 2023

Problem set #2

due Friday, February 10 at 10pm

Problem 1. For any t, the discriminant of the polynomial $f_t(X) = X^3 - tX^2 + (t-3)X + 1$ is a square: $\operatorname{disc}(f_t) = (9 - 3t + t^2)^2$. Assuming the discriminant is nonzero (the polynomial $f_t(X)$ is squarefree), this implies that either $f_t(X)$ splits into linear factors, or its Galois group is the cyclic group $A_3 \subset S_3$ of degree three.

a) Show that

 $\lim_{q \to \infty} \mathbb{P}_{t \in \mathbb{F}_q}(f_t(X) \text{ splits into linear factors over } \mathbb{F}_q) = \mathbb{P}_{\pi \in A_3}(\pi = \mathrm{id}) = \frac{1}{3}.$

b) Show that

 $\mathbb{P}_{t\in\mathbb{Z}}(f_t(X) \text{ splits into linear factors over } \mathbb{Q}) = 0.$

- **Problem 2.** a) Let (v_1, \ldots, v_n) be a directional basis for a full lattice Λ in \mathbb{R}^n . Show that the lattice Λ' spanned by v_1, \ldots, v_n has index at most n! in Λ .
 - b) Let $\lambda_1, \ldots, \lambda_n$ be the successive minima of a full lattice Λ in \mathbb{R}^n . Show that the successive minima $\lambda'_1, \ldots, \lambda'_n$ of the dual lattice $\Lambda' = \{x \in \mathbb{R}^n \mid x \cdot y \in \mathbb{Z} \text{ for all } y \in \Lambda\}$ satisfy $\lambda'_i \simeq_{n,\|\cdot\|} \lambda_{n+1-i}^{-1}$ for $i = 1, \ldots, n$.
- **Problem 3.** a) Let Λ be a full lattice in \mathbb{R}^2 and consider any norm $\|\cdot\|$ on \mathbb{R}^2 . Let the successive minima be $\lambda_1 \leq \lambda_2$. Show that the lattice Λ is spanned by some directional basis (v_1, v_2) for Λ . **Hint:** Use *Pick's theorem*.
 - b) Prove or disprove: Every directional basis for Λ spans Λ .
 - c) Let K be the smallest centrally symmetric convex subset of \mathbb{R}^3 that contains (1,0,0), (0,1,0), and (1,1,2). Show that the vectors in $K \cap \mathbb{Z}^3$ span \mathbb{R}^3 but not \mathbb{Z}^3 .

Problem 4. For any function f on \mathbb{R}^n and any R > 0, we let $f_R(x) = f(x/R)$. Let $f \in L^1(\mathbb{R}^n)$ be an integrable function and let $g : \mathbb{R}^n \to \mathbb{C}$ be a smooth compactly supported function. Show that for all $\varepsilon > 0$ and $k \ge 0$, as $R \to \infty$, we have

$$\sum_{x \in \mathbb{Z}^n} (f_R * g_{R^{\varepsilon}})(x) = R^{(1+\varepsilon)n} \cdot \int_{\mathbb{R}^n} f(x) \mathrm{d}x \cdot \int_{\mathbb{R}^n} g(x) \mathrm{d}x + \mathcal{O}_{f,g,\varepsilon,k}(R^{-k}).$$

Problem 5 (bonus). Show that the following claim is false: For every compact subset A of \mathbb{R} , as $R \to \infty$, we have:

$$#((R \cdot A) \cap \mathbb{Z}) = R \cdot \operatorname{vol}(A) + \mathcal{O}_A(1).$$

(This contradicts the first paragraph of Davenport's paper "On a principle of Lipschitz".)