We discussed integration by substitution over nonarchimedean local fields last time. More generally,
one can perform a change of variables in any dimension:

Theorem 13.3. Let A be a compact open subset of K™. Let fi,..., fn€ K[X1,...,X,]. For any
ye K", let m(y) = #{x € A| f(z) = y}. Then,

| mtd = | aetgacn)@)a.

where Jac(f)(z) = (%’;f?)m is the Jacobian matriz.

We skip the proof, which works similarly to Theorem 13.2, but using an n-dimensional form of
Hensel’s lemma.

Remark 13.4. There is a good notion of manifolds over K. One can integrate real-valued functions
over manifolds, and there is a corresponding change of variables formula. (See the two references
mentioned last time: [Pop| and [Igu00].)

14 Some mass formulas

One can either count isomorphism classes of (separable) field extensions of K, or subfields of K®P.
Of course, Galois conjugate subfields are isomorphic, so there may be fewer isomorphism classes
than subfields of K®P. More precisely:

Lemma 14.1. Let L be a separable field extension of K of degree n. Then,

n

#{Kc L' € K| L' ~ L as K-algebras} = ZAut(D)’
u

Proof. There are n embeddings L — K*P. Two embeddings pi, po have the same image if and
only if p1 = ps o ¢ for some automorphism o of L. O

For the rest of this section, let K be a nonarchimedean local field with residue field F,.

Theorem 14.2 (Serre’s mass formula, [Ser78|). Consider the totally ramified separable degree n
field extensions L of K, up to isomorphism. We have

|disc(L|K)|x 1
Z # Aut(L) g

Remark 14.3. Any inseparable extension L of K has disc(L|K) = 0, so including them wouldn’t
change the sum.

Remark 14.4. There are infinitely many (separable) totally ramified degree n field extensions L
of K if and only if the characteristic of K divides n.

Proof. By Lemma we can write the left-hand side as the following sum over totally ramified
degree n field extensions L < K5 of K:

1
— - > | disc(L|K)].
n L



For any L as above, let Uy, < L be the set of uniformizers in L. Let P be the set of separable monic
degree n Eisenstein polynomials f € Og[X]. The characteristic polynomial of any a € Uy, lies in
P since L is totally ramified. Conversely, the n roots of any f € P in K°P each generate a totally
ramified degree n extension of K. We thus have an n-to-1 map

(N |_| U, — P
LS K®°P
totally ramified
degree n

sending a € Uy, to its characteristic polynomial. We again identify monic degree n polynomials
with their coefficient tuple, so P < OF.

The theorem will follow from the change of variables formula applied to this map.

We first compute the volume of P directly. The set of Eisenstein polynomials X” + ¢,_1 X" ! +
---+co (with cg € Tk Oj and ¢y, . .., cp—1 € Tk Ok ) has volume ¢ "(1—q1). The set of inseparable
monic degree n polynomials f in Ok [X] has volume 0 because all inseparable polynomials f have
discriminant zero. (The discriminant is a nonzero polynomial in the coefficients of f. The set of
roots of any nonzero polynomial has volume 0.) Hence,

vol(P) = ¢ (1 —¢7").

Fix a field L as above, and any uniformizer 7y, of L. (As L is totally ramified, we have vk (7p) =
Lvk(mk).) Our goal is to compute the volume of the image of Ur. Note that (1,7, ... ) s
an integral basis of L. The map d: K™ — L, (bg,...,bp—1) — by + by + -+ + bn,lﬂzfl therefore
sends O% to Op. Our Haar measure on K™ corresponds to our Haar measure on L under this

map. The uniformizers of L are exactly the linear combinations by + by, + --- + bn_lwzfl with

bo € WKOK and b1 € O;{ and bg, e 7bn—1 € OK. Hence,

vol(Ur) = ¢ (1 — ¢ ).
Consider the n homomorphisms p1,...,p, : L — K*P, and combine them to a map p : L —
(K®P)™. The linear map pod : K" — (K*P)" is described by the matrix (p;(77)); . Since
(1,7L,..., 7 1) is an integral basis of L, its determinant is | disc(L|K)|"/2.

As in section 9, we consider the map
X : (K*P)" — {f € K°P[X] monic, degree n} ~ K"

that sends a = (aq,...,a,) to (X—a1) -+ (X—ay). Its Jacobian determinant has norm [ | i—ajl.

|1/2

1<j |a

(See Lemma 9.4.) If a = p(x}) for a uniformizer 7} of L, then this product is |disc(n})
| disc(L|K)|"/2, again because (1,7}, ..., 77" 1) is an integral basis.
The composition x o pod : K™ — (K°P)" sends (bo,...,bn—1) to (the coefficient tuple of) the
characteristic polynomial of by + bymy, + -+ + bn_lﬂz_l. Combining the above computations, we
see that the norm of the Jacobian determinant of this map is | disc(L|K)|.

Hence, by Theorem if we interpret the image ¥(Uy) as a multiset, then
vol(¢(Ur)) = | disc(L|K)| - vol(Uz) = |disc(L|K)| - ¢ (1 — ¢ ).

As 1) is n-to-1, we have

E vol(¢p(Ur)) = n - vol(P),
LS KseP
totally ramified
degree n



SO
Mldise(LIK)| - ' (1—g ) =n-g"(1—q "),
L

so indeed 1
— - > | dise(LIK)| = g~V O
n L

Corollary 14.5. Consider the separable field extensions L of K with ramification inder e and
inertia degree f, up to isomorphism. We have

Z | disc( L|K 1
#Aut(L)  f-qeDF

Proof. To avoid confusion, we will write | - | and | - |1 for the normalized norm on K and L,
respectively, and similarly gx and ¢, for the residue field size of K and L, respectively.

Using, Lemmall4.1] the left-hand side can again be rewritten as a sum over field extensions L & K5°P
of K with ramification index e and inertia degree f:

1 D | disc(L|K) |
ef [ G # Aut(L)

Each such field extension L|K decomposes uniquely as L|F|K with F|K unramified of degree f
and L|F totally ramified of degree e. (Here, F' is the splitting field of the polynomial X o _ X )
By the relative discriminant formula,

|disc(L|K)|x = | Nmpg (disc(L|F)) - disc(F|K)|x = | Nmp|g (disc(L|F))|x = | disc(L|F)|L.

Since there is exactly one unramified extension F' € K®P of degree f, the theorem implies:

1 1 1 1
— | disc(L|K)|x = = - — = —. O
ef LC;SGP f qL ! f . q&? 1)f

We can now prove the following mass formula regarding all étale extensions of K.

Theorem 14.6 ([Bha07, Theorem 1.1] and [Ked07, Theorem 1.1]). Consider the étale K -algebras
L of degree n, up to isomorphism. We have

|disc(LIK)| ¢
Z # Aut(L _g

where P(n,r) is the number of partitions of the integer n into r positive summands.

Example 14.7. If 2 t q, then the degree 2 extensions are K x K, K(y/a), K(\/Txk), K(y/ar),
where a € O is a quadratic nonresidue. They all have two automorphisms, and their discriminant

norms are 1,1,q %, ¢, respectively. Hence, > %ﬂl{)ﬂ =1+q¢L

Proof. Any L can be written as L = L; x --- x L,, with disc(L|K) = disc(L1|K) - - - disc(Ly|K),
n=|[Ly: K|+ --+][Ly: K]. Consider the obvious action of S, on the set of tuples (L1,...,L;)
of isomorphism classes of field extensions of K. We have

# Aut(L) = # Aut(Ly) ---# Aut(L,) - #Stabs, (L1, ..., Ly)).



(Any automorphism consists of a permutation of isomorphic factors of L together with isomorphisms
of the individual factors.)
. disc(LI)|
isc
o= Y .
# Aut(L)

separable field ext.
of degree n

It follows from the above discussion that

| disc(L|K)| | disc(L; |K 1
b= 2 Am@) — & 2, H -
, T # Aut(L) 730 5y-orbit of (L, . S #Au(L " #Stabg, (L1, ..., L))
étale K-algebra with n = 3, [L; : K]

of degree n
By the orbit-stabilizer theorem, this is
Z 1 Z 1—[ | disc(L; ]K
=7 i) # Aut(L
with n = 3,[L; : K]
This implies that the generating functions ), a,X™ and ), b,X"™ are related by the power series

identity
Z b, X™ = exp < 2 anX”>.

n=0 n=0

According to the previous corollary, we have

1
n = Z Foge i

e, f=1:
ef=1
SO
n o _
D" = ¥ ey - - Do (1- 25 ).
n=0 e, f>1 ex1
Hence,
boXT — X ez ele B P(n,r) xn
Z n B H HE o Z Yesqle—Dte Z g ’
n=0 e=11=0 t1,tz,20 477 n=0
(Any choice of t1,t2,... withn =}, et. corresponds to a partition of n into )] -, t. summands,
where e occurs t. times.) O
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