Math 229: Introduction to Analytic Number Theory

Spring 2022

Problem set \#9
due Friday, April 15 at noon

Problem 1. a) Let $\omega(n)$ be the number of prime divisors of n, counted with multiplicity. Show that for large x, we have

$$
\#\{n \leq x: \omega(n) \leq 2\} \asymp \frac{x \log \log x}{\log x}
$$

b) Fix some $0<\varepsilon<1$. Show that for large x (depending on ε), we have

$$
\#\left\{n \leq x \text { not divisible by any prime } p<x^{\varepsilon}\right\} \asymp_{\varepsilon} \frac{x}{\log x} \text {. }
$$

Problem 2 (Truncated inclusion-exclusion).
a) Let $n \geq 1$ and $k \geq 0$.

Show that

$$
\sum_{l=0}^{k}(-1)^{l}\binom{n}{l}
$$

is ≥ 0 if k is even and ≤ 0 if k is odd. (We use the convention that $\binom{n}{l}=0$ if $l>n$.)
Hint: There's a simpler formula for this sum.
b) Use a) to show that if $S_{1}, \ldots, S_{r} \subseteq A$ are finite sets, and we let

$$
F_{k}:=\sum_{\substack{I \subseteq\{1, \ldots, r\}: \\ \# I \leq k}}(-1)^{\# I} \cdot \#\left(\bigcap_{i \in I} S_{i}\right)
$$

(with the convention that $\bigcap_{i \in \emptyset} S_{i}=A$), then

$$
\#\left(A \backslash\left(S_{1} \cup \cdots \cup S_{r}\right)\right) \leq F_{k} \quad \text { for even } k
$$

and

$$
\#\left(A \backslash\left(S_{1} \cup \cdots \cup S_{r}\right)\right) \geq F_{k} \quad \text { for odd } k
$$

Problem 3. Show that for sufficiently large $t \geq 1$, for all $k \geq 1$, for sufficiently large x (depending on k), there is a number $x \leq y \leq x+x^{1 / k}$ which is the product of at most $t k$ primes.

Problem 4. Show that for sufficiently large $t \geq 1$, for large x, we have $\#\left\{q \leq x\right.$ prime : $q+2$ not divisible by any prime $\left.p<x^{1 / t}\right\} \gg \frac{x}{(\log x)^{2}}$.

You may assume the Generalized Riemann Hypothesis.
Remark: This can easily be made unconditional by using the BombieriVinogradov theorem instead of the Riemann Hypothesis.

