Math 229: Introduction to Analytic Number Theory

Spring 2022

Problem set \#7
due Friday, April 1 at noon

Problem 1. a) Let $k>0$ be an integer and let $x, c>0$. Show that

$$
\lim _{T \rightarrow \infty} \frac{1}{2 \pi i} \int_{c-i T}^{c+i T} \frac{x^{s}}{s^{k+1}} \mathrm{~d} s= \begin{cases}\frac{(\log x)^{k}}{k!}, & x \geq 1 \\ 0, & x \leq 1\end{cases}
$$

b) (bonus) More generally, for any real numbers $k, x, c>0$, show that

$$
\lim _{T \rightarrow \infty} \frac{1}{2 \pi i} \int_{c-i T}^{c+i T} \frac{x^{s}}{s^{k+1}} \mathrm{~d} s= \begin{cases}\frac{(\log x)^{k}}{\Gamma(k+1)}, & x \geq 1 \\ 0, & x \leq 1\end{cases}
$$

(Here, we use a branch of $s^{k+1}=e^{(k+1) \log s}$ which is holomorphic in $\{\Re(s)>0\}$.)

Problem 2. Show that there is a constant $C>0$ such that for all $q_{1}, q_{2} \geq 1$ and all primitive real characters χ_{1}, χ_{2}, if $q_{1} \neq q_{2}$ or $\chi_{1} \neq \chi_{2}$, then at most one of the functions $L\left(s, \chi_{1}\right)$ and $L\left(s, \chi_{2}\right)$ has a real zero ρ with

$$
\Re(\rho)>1-\frac{C}{\log \left(q_{1} q_{2}\right)} .
$$

Hint: Consider the function $\zeta(s) L\left(s, \chi_{1}\right) L\left(s, \chi_{2}\right) L\left(s, \chi_{1} \chi_{2}\right)$. What is its logarithmic derivative?

Problem 3. As in problem 2a on problem set 3 , let $\nu(n)$ be the number of primes dividing n.
a) Show that for any $\varepsilon>0$, we have $2^{\nu(n)}<_{\varepsilon} n^{\varepsilon}$.
b) Show that for $\Re(s)>1+\varepsilon$, we have $|\zeta(s)| \gg_{\varepsilon} 1$.
c) Show that there are numbers $A, B \in \mathbb{R}$ with $A \neq 0$ and $\varepsilon>0$ such that for large x, we have

$$
\sum_{n \leq x} 2^{\nu(n)}=A x \log x+B x+\mathcal{O}\left(x^{1-\varepsilon}\right)
$$

Problem 4. Prove the Riemann hypothesis. You may assume that for any $\varepsilon>0$, for large x, we have

$$
\sum_{n \leq x} \Lambda(n)=x+\mathcal{O}_{\varepsilon}\left(x^{1 / 2+\varepsilon}\right)
$$

