Math 229: Introduction to Analytic Number Theory

Spring 2022

Problem set \#5
due Thursday, March 10 at noon

Problem 1. a) Show that $\zeta(1-n)=(-1)^{n+1} B_{n}(0) / n$ for $n \geq 1$.
Hint: Use the Euler-Maclaurin formula on an interval $[\varepsilon, N]$ and let $\varepsilon \rightarrow 0$ and $N \rightarrow \infty$.
b) Show that

$$
\zeta(n)=\frac{1}{2}(2 \pi)^{n}(-1)^{n / 2+1} B_{n}(0) / n!
$$

for even integers $n \geq 2$.
Hint: Use the functional equation and properties of the gamma function.
c) (bonus) Let χ be the nontrivial character modulo 4 . Show that

$$
L(1, \chi)=\pi / 4
$$

Hint: There are several ways of doing this: Either follow the strategy from parts a) and b), or use the class number formula.

Problem 2. Consider the multiplicative characters χ modulo a fixed integer $q \geq 1$. Show that

$$
\prod_{\chi} L(s, \chi)=\prod_{p \nmid q \text { prime }}\left(1-p^{-\operatorname{ord}_{q}(p) s}\right)^{-\varphi(q) / \operatorname{ord}_{q}(p)}
$$

where we denote by $\operatorname{ord}_{q}(n)$ the multiplicative order of the residue class $n \bmod q$.
Problem 3. Let $q \geq 1$ and let $c: \mathbb{Z} / q \mathbb{Z} \rightarrow \mathbb{Q} \geq 0$ be any function. Assume that $b:=\frac{1}{\varphi(q)} \sum_{x \in(\mathbb{Z} / q \mathbb{Z})^{\times}} c(x)>0$. For an integer $n \geq 1$, let $a_{n}=$ $\prod_{p \mid n} c(p \bmod q)$. Show that

$$
\sum_{n \leq X} a_{n} \sim C \cdot X(\log X)^{b-1}
$$

for some constant $C>0$.

Problem 4. Let χ be a nontrivial real character modulo q. Assume that q is prime. Let V be the \mathbb{C}-vector space of functions $\mathbb{Z} / q \mathbb{Z} \rightarrow \mathbb{C}$. Let $T: V \rightarrow V$ be the map sending a function c to its Fourier transform \widehat{c} given by $\widehat{c}(y)=\sum_{x \in \mathbb{Z} / q \mathbb{Z}} c(x) e^{2 \pi i x y / q}$.
a) Show that $\chi(x)=\left(\frac{x}{q}\right)$ for all x.
b) Show that $\tau(\chi):=\widehat{\chi}(1)$ is the trace of the linear map T.
c) What are the eigenvalues of T^{2} and what are their multiplicities?
d) Show that $\operatorname{det}(T)=i^{q(q-1) / 2} \cdot q^{q / 2}$.

Hint: Use trigonometry to determine the sign of $\operatorname{det}(T)$.
e) Show that $\tau(\chi)=\sqrt{q}$ if χ is even and $\tau(\chi)=i \sqrt{q}$ if χ is odd. Hint: We already know this except for the sign.

