Math 229: Introduction to Analytic Number Theory

Spring 2022

Problem set #4

due Wednesday, February 23 at noon

Although we haven't finished the proof, you may use the Wiener–Ikehara theorem and Kato's extension.

Problem 1. a) Show that there is a nonzero Schwartz function f on \mathbb{R} such that:

- i) $f(x) \ge 0$ for all $x \in \mathbb{R}$.
- ii) $\hat{f}(t) \ge 0$ for all $t \in \mathbb{R}$.
- iii) \hat{f} has compact support.
- b) Show that there is no compactly supported Schwartz function f on \mathbb{R} whose Fourier transform \hat{f} is also compactly supported. **Hint:** The Fourier transform $\hat{f}(t) = \int_{\mathbb{R}} f(x)e^{-2\pi i x t} dx$ would be holomorphic for $t \in \mathbb{C}$.
- **Problem 2.** a) Show that there is exactly one real number $\rho > 1$ such that $\zeta(\rho) = 2$.
 - b) Show that there is no complex number $s \neq \rho$ with $\Re(s) \geq \rho$ and $\zeta(s) = 2$.
 - c) Let Δ_n be the number of ways of writing n as an ordered product of integers greater than 1:

$$\Delta_n = \#\{(k, f_1, \dots, f_k) : k \ge 0, f_1, \dots, f_k \ge 2, n = f_1 \cdots f_k\}.$$

Show that

$$\sum_{n \le X} \Delta_n \sim -\frac{1}{\rho \zeta'(\rho)} \cdot X^{\rho}.$$

Problem 3. Let $a_n = 2^{-\nu(n)}$, where $\nu(n)$ is the number of primes dividing n. Show that

$$\sum_{n \le X} a_n \sim C \cdot X / \sqrt{\log X}$$

for some constant C > 0.

Problem 4. a) For $m \ge 0$ and any $\theta \in \mathbb{R}$, show that

$$(2m+1) + 2\sum_{j=0}^{2m-1} (j+1)\cos((2m-j)\theta) \ge 0.$$

b) Let f(s) = D(a, s) be a Dirichlet series with $a_1 = 1$. Consider the Dirichlet series $D(b, s) := -\frac{f'(s)}{f(s)}$. Assume that $b_1, b_2, \dots \ge 0$. Furthermore, assume that both D(a, s) and D(b, s) have a meromorphic continuation to $\{s \in \mathbb{C} : \Re(s) \ge 1\}$. Assume that the continuation of D(a, s) to this region is holomorphic except for a pole of order $e \ge 1$ at s = 1. Assume that the continuation of D(b, s) is holomorphic in $\{s \in \mathbb{C} : \Re(s) > 1\}$. Show that D(a, s) has no zero s with $\Re(s) > 1$ and that any zero s with $\Re(s) = 1$ has multiplicity at most e/2.