Math 229: Introduction to Analytic Number Theory

Spring 2022

Problem set \#10
due Friday, April 29 at noon

Problem 1. a) Which functions $c: \mathbb{Z} / p \mathbb{Z} \rightarrow \mathbb{C}$ that vanish on exactly ω of the residue classes satisfy the following equality?

$$
\sum_{t \in(\mathbb{Z} / p \mathbb{Z})^{\times}}|\widehat{c}(t)|^{2}=|\widehat{c}(0)|^{2} \cdot \frac{\omega}{p-\omega}
$$

b) Prove Corollary 11.4.3: Let $d \geq 1$ be squarefree and let $c: \mathbb{Z} / d \mathbb{Z} \rightarrow \mathbb{C}$ be a function. Assume that for each $p \mid d$, there are $\omega(p)$ residue classes $a \bmod p$ such that $c(x)=0$ whenever $x \equiv a \bmod p$. Then,

$$
\sum_{t \in(\mathbb{Z} / d \mathbb{Z})^{\times}}|\widehat{c}(t)|^{2} \geq|\widehat{c}(0)|^{2} \cdot \prod_{p \mid d} \frac{\omega(p)}{p-\omega(p)}
$$

Problem 2 (bonus). Let $f \in \mathcal{S}(\mathbb{R})$ and let \mathcal{P} be a finite set of prime numbers and q be the product of the elements of \mathcal{P}. For each $p \in \mathcal{P}$, let $c_{p}: \mathbb{Z} / p \mathbb{Z} \rightarrow \mathbb{C}$ be a function. Show that

$$
\sum_{x \in \mathbb{Z}} f(x) \prod_{p \in \mathcal{P}} c_{p}(x \bmod p)=\sum_{t \in \mathbb{Z}} \widehat{f}(t / q) \prod_{p \in \mathcal{P}} \widehat{c_{p}}(t \bmod p)
$$

Problem 3. Show that for any integer $k \geq 2$,

$$
\int_{\mathbb{R}}\left(\frac{e(t)-1}{2 \pi i t}\right)^{k} e(-t) \mathrm{d} t=\frac{1}{(k-1)!}
$$

Hint: This is the value at 1 of the Fourier transform of the Fourier transform of a reasonably simple function.
Problem 4. Let $N \geq 1$ and let

$$
f(t)=\sum_{n=0}^{N} e\left(t n^{2}\right)
$$

Let $q \geq 1$ and $a \in(\mathbb{Z} / q \mathbb{Z})^{\times}$and $t=a / q$.
a) Assume that q is odd and squarefree. Show that

$$
f(t)= \begin{cases}N \cdot\left(\frac{a}{q}\right) / \sqrt{q}+\mathcal{O}(q), & \left(\frac{-1}{q}\right)=1, \\ N \cdot\left(\frac{a}{q}\right) \cdot i / \sqrt{q}+\mathcal{O}(q), & \left(\frac{-1}{q}\right)=-1 .\end{cases}
$$

b) Show that

$$
f(t)^{2} \ll N^{2} q^{-1}+N \log q+q \log q .
$$

Hint: Expand the product $|f(t)|^{2}=f(t) \overline{f(t)}$. Rewrite it as a sum of geometric series.

Problem 5 (bonus). Let $U, V \geq 1$.
a) Show that

$$
\mu * \Lambda=\mu * \Lambda_{\leq V}+\mu_{\leq U} * \Lambda-\mu_{\leq U} * \Lambda_{\leq V}+\mu_{>U} * \Lambda_{>V} .
$$

b) Prove Vaughan's identity: For any $U, V \geq 1$,

$$
\Lambda=\Lambda_{\leq V}+\mu_{\leq U} * L-\mu_{\leq U} * \Lambda_{\leq V} * \mathbb{1}-\left(\mu_{\leq U} * \mathbb{1}\right)_{>U} * \Lambda_{>V} .
$$

