Math 229: Introduction to Analytic Number Theory

Spring 2022

Problem set #1

due Wednesday, February 2 at noon

Problem 1. Here are two ways to estimate the number N(X) of pairs $(x, y) \in \mathbb{N}^2$ such that $x^2y \leq X$:

a)
$$N(X) = \sum_{1 \le x \le X^{1/2}} \sum_{1 \le y \le \frac{X}{x^2}} 1 \approx \sum_{1 \le x \le X^{1/2}} \frac{X}{x^2} \approx X \cdot \sum_{n=1}^{\infty} \frac{1}{n^2}$$

b) $N(X) = \sum_{1 \le y \le X} \sum_{1 \le x \le \left(\frac{X}{y}\right)^{1/2}} \approx \sum_{1 \le y \le X} \left(\frac{X}{y}\right)^{1/2} \approx X^{1/2} \cdot \sum_{1 \le y \le X} y^{-1/2} \approx 2 \cdot X$

Which of the two estimates is better for large X? Show that the better estimate differs from N(X) by $C \cdot X^{1/2} + \mathcal{O}(X^{1/3})$ for some constant C.

Problem 2. Show that

$$\frac{x}{\log x} \sim \int_2^x \frac{1}{\log t} \mathrm{d}t \qquad \text{for } x \to \infty.$$

Problem 3. Show that the following two asymptotics for $x \to \infty$ are equivalent:

$$\sum_{\substack{p \le x \\ \text{prime}}} 1 \sim \int_2^x \frac{1}{\log t} \mathrm{d}t \tag{1}$$

$$\sum_{\substack{p \le x \\ \text{prime}}} \log p \sim x \tag{2}$$

Problem 4. Show that for any integer $m \ge 2$ and any real number $x \ge 1$,

$$\sum_{n \ge x} \exp(2\pi i n/m) \cdot 1/n = \mathcal{O}(m/x).$$

(This infinite series $\sum_{n \ge x} (\cdots)$ is not absolutely convergent, so it really means $\lim_{N \to \infty} \sum_{n \ge x} (\cdots)$.)

Problem 5 (ungraded). Show that

$$\log(n!) = n \log n - n + \frac{1}{2} \log n + C + \mathcal{O}_{n \to \infty}(1/n)$$

for some constant $C \in \mathbb{R}$. (This turns out to be $C = \frac{1}{2} \log(2\pi)$.)

Problem 6 (bonus, ungraded). Which of the following statements do you believe? Can you give a (heuristic) reason? Can you heuristically estimate the number of primes $p \leq X$ of the given form?

- a) There are infinitely many primes of the form $n^2 + 1$ with $n \in \mathbb{Z}_{\geq 0}$.
- b) There are infinitely many primes of the form $2^n + 1$ with $n \in \mathbb{Z}_{\geq 0}$.
- c) There are infinitely many primes of the form $2^{2^n} + 1$ with $n \in \mathbb{Z}_{\geq 0}$.

Problem 7 (bonus, ungraded). For which polynomials $f(X) \in \mathbb{Z}[X]$ do you expect that there are infinitely many primes of the form f(n) with $n \in \mathbb{Z}$?