Math 229: Introduction to Analytic Number Theory

Spring 2022

Problem set \#1
due Wednesday, February 2 at noon

Problem 1. Here are two ways to estimate the number $N(X)$ of pairs $(x, y) \in \mathbb{N}^{2}$ such that $x^{2} y \leq X$:
a) $N(X)=\sum_{1 \leq x \leq X^{1 / 2}} \sum_{1 \leq y \leq \frac{X}{x^{2}}} 1 \approx \sum_{1 \leq x \leq X^{1 / 2}} \frac{X}{x^{2}} \approx X \cdot \sum_{n=1}^{\infty} \frac{1}{n^{2}}$
b) $N(X)=\sum_{1 \leq y \leq X} \sum_{1 \leq x \leq\left(\frac{X}{y}\right)^{1 / 2}} \approx \sum_{1 \leq y \leq X}\left(\frac{X}{y}\right)^{1 / 2} \approx X^{1 / 2} \cdot \sum_{1 \leq y \leq X} y^{-1 / 2} \approx 2 \cdot X$.

Which of the two estimates is better for large X ? Show that the better estimate differs from $N(X)$ by $C \cdot X^{1 / 2}+\mathcal{O}\left(X^{1 / 3}\right)$ for some constant C.

Problem 2. Show that

$$
\frac{x}{\log x} \sim \int_{2}^{x} \frac{1}{\log t} \mathrm{~d} t \quad \text { for } x \rightarrow \infty
$$

Problem 3. Show that the following two asymptotics for $x \rightarrow \infty$ are equivalent:

$$
\begin{gather*}
\sum_{\substack{p \leq x \\
\text { prime }}} 1 \sim \int_{2}^{x} \frac{1}{\log t} \mathrm{~d} t \tag{1}\\
\sum_{\substack{p \leq x \\
\text { prime }}} \log p \sim x \tag{2}
\end{gather*}
$$

Problem 4. Show that for any integer $m \geq 2$ and any real number $x \geq 1$,

$$
\sum_{n \geq x} \exp (2 \pi i n / m) \cdot 1 / n=\mathcal{O}(m / x)
$$

(This infinite series $\sum_{n \geq x}(\cdots)$ is not absolutely convergent, so it really means $\lim _{N \rightarrow \infty} \sum_{N \geq n \geq x}(\cdots)$.)

Problem 5 (ungraded). Show that

$$
\log (n!)=n \log n-n+\frac{1}{2} \log n+C+\mathcal{O}_{n \rightarrow \infty}(1 / n)
$$

for some constant $C \in \mathbb{R}$. (This turns out to be $C=\frac{1}{2} \log (2 \pi)$.)
Problem 6 (bonus, ungraded). Which of the following statements do you believe? Can you give a (heuristic) reason? Can you heuristically estimate the number of primes $p \leq X$ of the given form?
a) There are infinitely many primes of the form $n^{2}+1$ with $n \in \mathbb{Z}_{\geq 0}$.
b) There are infinitely many primes of the form $2^{n}+1$ with $n \in \mathbb{Z}_{\geq 0}$.
c) There are infinitely many primes of the form $2^{2^{n}}+1$ with $n \in \mathbb{Z}_{\geq 0}$.

Problem 7 (bonus, ungraded). For which polynomials $f(X) \in \mathbb{Z}[X]$ do you expect that there are infinitely many primes of the form $f(n)$ with $n \in \mathbb{Z}$?

