Math 137: Algebraic Geometry Spring 2022

Problem set #9

due Thursday, April 21 at noon

Throughout, K is assumed to be an algebraically closed field.

Problem 1 (bonus). Let $n \ge 2$ and let $F_d \cong K^{\binom{n+d}{n}}$ be the vector space of polynomials $f \in K[X_1, \ldots, X_n]$ of degree $\le d$.

- a) If d > 2n 3, show that there is a nonempty Zariski open subset $U \subseteq F_d$ such that the set $\mathcal{V}(f) \subseteq K^n$ doesn't contain a straight line for any $f \in U$.
- b) If d < 2n 3, show that for every $f \in F_d$, if $\mathcal{V}(f) \subseteq K^n$ contains a straight line, then it contains infinitely many.
- c) (too difficult for a bonus problem and totally unfair) If $d \leq 2n 3$, show that there is a nonempty Zariski open subset $U \subseteq F_d$ such that the set $\mathcal{V}(f)$ contains at least one straight line for all $f \in U$.

Hint: Look at the proof of Theorem 13.5.1. What is the dimension of "the space of straight lines" in K^n ? What is the dimension of the space of $f \in F_d$ such that $\mathcal{V}(f)$ contains a particular straight line?

Problem 2. Show that a polynomial $f \in K[X_1, \ldots, X_n]$ vanishes on the entire line spanned by a nonzero vector $x \in K^n$ if and only if all of its homogeneous parts f_d vanish at x.

Problem 3. Let $A = \mathcal{V}(I)$ for an ideal I of $K[X_1, \ldots, X_n]$. Let $S \subseteq K[X_0, \ldots, X_n]$ be the set of homogenizations of elements of I at X_0 . Show that $\mathcal{V}_{\mathbb{P}_K^n}(S)$ is the Zariski closure of the image of A under the 0-th standard affine chart map φ_0 .

Any invertible linear map $g: K^{n+1} \to K^{n+1}$ induces a map $f: \mathbb{P}_K^n \to \mathbb{P}_K^n$ sending the line spanned by $x \in K^{n+1}$ to the line spanned by $g(x) \in K^{n+1}$. Maps $f: \mathbb{P}_K^n \to \mathbb{P}_K^n$ of this form are called *projective transformations*.

- **Problem 4.** a) Consider the projective line $\mathbb{P}_K^1 = K \sqcup \{\infty\}$. Let P, Q, R be three distinct points in \mathbb{P}_K^1 . Show that there is a projective transformation $f : \mathbb{P}_K^1 \to \mathbb{P}_K^1$ sending P to 0, Q to 1, and R to ∞ .
 - b) We say that points P_1, \ldots, P_m in \mathbb{P}_K^n are in general linear position if no d + 2 of them lie on a d-dimensional linear subspace for any $0 \le d \le \min(m-2, n-1)$.

Let the points $P_1, \ldots, P_{n+2} \in \mathbb{P}_K^n$ be in general linear position and let $Q_1, \ldots, Q_{n+2} \in \mathbb{P}_K^n$ be in general linear position. Show that there is a unique projective transformation $f : \mathbb{P}_K^n \to \mathbb{P}_K^n$ sending P_i to Q_i for $i = 1, \ldots, n+2$.

Problem 5 (Pappus's hexagon theorem). Let $g \neq h$ be lines in \mathbb{P}_K^2 that intersect in the point P. Let A, B, C be points on g and A', B', C' be points on h (all seven points P, A, B, C, A', B', C' distinct). Let Z be the point of intersection of the lines AB' and A'B. Let Y be the point of intersection of the lines AC' and A'C. Let X be the point of intersection of the lines BC' and B'C. Show that X, Y, Z are colinear. (Hint: Apply a projective transformation to for example make P = [0 : 0 : 1], A = [1 : 0 : 0],B = [1 : 0 : 1], C = [r : 0 : 1], A' = [0 : 1 : 1], B' = [0 : 1 : 0], C' = [0 : s : 1].Then compute X, Y, Z.)