Math 137: Algebraic Geometry
 Spring 2022

Problem set \#9

due Thursday, April 21 at noon

Throughout, K is assumed to be an algebraically closed field.
Problem 1 (bonus). Let $n \geq 2$ and let $F_{d} \cong K\binom{n+d}{n}$ be the vector space of polynomials $f \in K\left[X_{1}, \ldots, X_{n}\right]$ of degree $\leq d$.
a) If $d>2 n-3$, show that there is a nonempty Zariski open subset $U \subseteq F_{d}$ such that the set $\mathcal{V}(f) \subseteq K^{n}$ doesn't contain a straight line for any $f \in U$.
b) If $d<2 n-3$, show that for every $f \in F_{d}$, if $\mathcal{V}(f) \subseteq K^{n}$ contains a straight line, then it contains infinitely many.
c) (too difficult for a bonus problem and totally unfair) If $d \leq 2 n-3$, show that there is a nonempty Zariski open subset $U \subseteq F_{d}$ such that the set $\mathcal{V}(f)$ contains at least one straight line for all $f \in U$.

Hint: Look at the proof of Theorem 13.5.1. What is the dimension of "the space of straight lines" in K^{n} ? What is the dimension of the space of $f \in F_{d}$ such that $\mathcal{V}(f)$ contains a particular straight line?

Problem 2. Show that a polynomial $f \in K\left[X_{1}, \ldots, X_{n}\right]$ vanishes on the entire line spanned by a nonzero vector $x \in K^{n}$ if and only if all of its homogeneous parts f_{d} vanish at x.

Problem 3. Let $A=\mathcal{V}(I)$ for an ideal I of $K\left[X_{1}, \ldots, X_{n}\right]$. Let $S \subseteq$ $K\left[X_{0}, \ldots, X_{n}\right]$ be the set of homogenizations of elements of I at X_{0}. Show that $\mathcal{V}_{\mathbb{P}_{K}^{n}}(S)$ is the Zariski closure of the image of A under the 0 -th standard affine chart map φ_{0}.

Any invertible linear map $g: K^{n+1} \rightarrow K^{n+1}$ induces a map $f: \mathbb{P}_{K}^{n} \rightarrow \mathbb{P}_{K}^{n}$ sending the line spanned by $x \in K^{n+1}$ to the line spanned by $g(x) \in K^{n+1}$. Maps $f: \mathbb{P}_{K}^{n} \rightarrow \mathbb{P}_{K}^{n}$ of this form are called projective transformations.

Problem 4. a) Consider the projective line $\mathbb{P}_{K}^{1}=K \sqcup\{\infty\}$. Let P, Q, R be three distinct points in \mathbb{P}_{K}^{1}. Show that there is a projective transformation $f: \mathbb{P}_{K}^{1} \rightarrow \mathbb{P}_{K}^{1}$ sending P to $0, Q$ to 1 , and R to ∞.
b) We say that points P_{1}, \ldots, P_{m} in \mathbb{P}_{K}^{n} are in general linear position if no $d+2$ of them lie on a d-dimensional linear subspace for any $0 \leq d \leq \min (m-2, n-1)$.
Let the points $P_{1}, \ldots, P_{n+2} \in \mathbb{P}_{K}^{n}$ be in general linear position and let $Q_{1}, \ldots, Q_{n+2} \in \mathbb{P}_{K}^{n}$ be in general linear position. Show that there is a unique projective transformation $f: \mathbb{P}_{K}^{n} \rightarrow \mathbb{P}_{K}^{n}$ sending P_{i} to Q_{i} for $i=1, \ldots, n+2$.

Problem 5 (Pappus's hexagon theorem). Let $g \neq h$ be lines in \mathbb{P}_{K}^{2} that intersect in the point P. Let A, B, C be points on g and $A^{\prime}, B^{\prime}, C^{\prime}$ be points on h (all seven points $P, A, B, C, A^{\prime}, B^{\prime}, C^{\prime}$ distinct). Let Z be the point of intersection of the lines $A B^{\prime}$ and $A^{\prime} B$. Let Y be the point of intersection of the lines $A C^{\prime}$ and $A^{\prime} C$. Let X be the point of intersection of the lines $B C^{\prime}$ and $B^{\prime} C$. Show that X, Y, Z are colinear. (Hint: Apply a projective transformation to for example make $P=[0: 0: 1], A=[1: 0: 0]$, $B=[1: 0: 1], C=[r: 0: 1], A^{\prime}=[0: 1: 1], B^{\prime}=[0: 1: 0], C^{\prime}=[0: s: 1]$. Then compute X, Y, Z.)

