Math 137: Algebraic Geometry Spring 2022 Problem set #6

due Friday, March 25 at noon

Throughout, K is assumed to be an algebraically closed field.

Problem 1. Show that any algebraic subset of K^n is compact with respect to the Zariski topology. (Every open cover has a finite subcover.)

Problem 2. Let V be an irreducible algebraic set. Show that $\mathcal{O}_V(V) = \Gamma(V)$. (In other words: if a rational function $f \in K(V)$ is defined at every point in V, then $f \in \Gamma(V)$.)

Problem 3. Let V be an irreducible algebraic set, W be any algebraic set, and let $\varphi : V \dashrightarrow W$ be a rational map. We denote by U_{φ} the set of points $P \in V$ at which φ is defined. Abusing notation, we write $\overline{\varphi(V)} := \overline{\varphi(U_{\varphi})}$. We say φ is dominant if $\overline{\varphi(V)} = W$.

- a) Show that the map $\varphi : U_{\varphi} \to W$ is continuous (with respect to the subspace topologies on U_f and W).
- b) Show that $\overline{\varphi(V)}$ is irreducible.
- c) Let $U \subseteq U_{\varphi}$ be a nonempty open subset. Show that $\overline{\varphi(U)} = \overline{\varphi(V)}$.
- d) Show that φ is dominant if and only if the map $\Gamma(W) \to K(V)$ sending $f \in \Gamma(W)$ to $f \circ \varphi$ is injective.

Problem 4. Are $a = X^2 \in \mathbb{C}(X)$ and $b = X^3 + X + 1 \in \mathbb{C}(X)$ algebraically independent over \mathbb{C} ? If not, find a polynomial $f \in \mathbb{C}[S,T]$ with f(a,b) = 0.

Problem 5. Let I be any ideal of $K[X_1, \ldots, X_n]$ and let $V = \mathcal{V}(I)$. Let $S = K[X_1, \ldots, X_n]/I$.

a) Show that dim(V) is the maximum number of (over K) algebraically independent elements of S. Note: We call elements f_1, \ldots, f_d of any K-algebra S algebraically independent if there is no polynomial $0 \neq g \in K[Y_1, \ldots, Y_d]$ such that $g(f_1, \ldots, f_d) = 0$ in S. b) Show that $\dim(V)$ is the maximum size of a sublist of X_1, \ldots, X_n consisting of algebraically independent elements of R.

You can submit the following two problems either with problem set 6 or problem set 7.

Problem 6 (bonus). Consider an ideal I of $K[X_1, \ldots, X_n]$ and any monomial order. Show that $\dim(\mathcal{V}(I))$ is the maximal size of a subset $A \subseteq \{1, \ldots, n\}$ such that every monomial of the form $\prod_{i \in A} X_i^{e_i}$ is a standard monomial.

Hint: First, think about how to prove this for the degree-lexicographic monomial order. (You might take some inspiration from the next problem.)

Problem 7 (bonus). Let *I* be an ideal of $K[X_1, \ldots, X_n]$. For any $d \ge 0$, let $R_d \subset K[X_1, \ldots, X_n]$ be the *K*-vector space of polynomials of degree at most *d* and let $\Gamma_d = R_d/(R_d \cap I)$.

- a) Show that there is a polynomial $p \in \mathbb{Q}[D]$ and an integer $r \geq 0$ such that for all $d \geq r$, the K-vector space Γ_d has dimension p(d). (This polynomial p(D) is called the *Hilbert polynomial* of I.) **Hint:** Use a Gröbner basis and the inclusion–exclusion principle.
- b) Show that $\dim(\mathcal{V}(I)) = \deg(p)$.