Math 137: Algebraic Geometry Spring 2022

Problem set \#6
due Friday, March 25 at noon

Throughout, K is assumed to be an algebraically closed field.
Problem 1. Show that any algebraic subset of K^{n} is compact with respect to the Zariski topology. (Every open cover has a finite subcover.)

Problem 2. Let V be an irreducible algebraic set. Show that $\mathcal{O}_{V}(V)=$ $\Gamma(V)$. (In other words: if a rational function $f \in K(V)$ is defined at every point in V, then $f \in \Gamma(V)$.)

Problem 3. Let V be an irreducible algebraic set, W be any algebraic set, and let $\varphi: V \rightarrow W$ be a rational map. We denote by U_{φ} the set of points $P \in V$ at which φ is defined. Abusing notation, we write $\overline{\varphi(V)}:=\overline{\varphi\left(U_{\varphi}\right)}$. We say φ is dominant if $\overline{\varphi(V)}=W$.
a) Show that the map $\varphi: U_{\varphi} \rightarrow W$ is continuous (with respect to the subspace topologies on U_{f} and W).
b) Show that $\overline{\varphi(V)}$ is irreducible.
c) Let $U \subseteq U_{\varphi}$ be a nonempty open subset. Show that $\overline{\varphi(U)}=\overline{\varphi(V)}$.
d) Show that φ is dominant if and only if the map $\Gamma(W) \rightarrow K(V)$ sending $f \in \Gamma(W)$ to $f \circ \varphi$ is injective.

Problem 4. Are $a=X^{2} \in \mathbb{C}(X)$ and $b=X^{3}+X+1 \in \mathbb{C}(X)$ algebraically independent over \mathbb{C} ? If not, find a polynomial $f \in \mathbb{C}[S, T]$ with $f(a, b)=0$.

Problem 5. Let I be any ideal of $K\left[X_{1}, \ldots, X_{n}\right]$ and let $V=\mathcal{V}(I)$. Let $S=K\left[X_{1}, \ldots, X_{n}\right] / I$.
a) Show that $\operatorname{dim}(V)$ is the maximum number of (over K) algebraically independent elements of S.
Note: We call elements f_{1}, \ldots, f_{d} of any K-algebra S algebraically independent if there is no polynomial $0 \neq g \in K\left[Y_{1}, \ldots, Y_{d}\right]$ such that $g\left(f_{1}, \ldots, f_{d}\right)=0$ in S.
b) Show that $\operatorname{dim}(V)$ is the maximum size of a sublist of X_{1}, \ldots, X_{n} consisting of algebraically independent elements of R.

You can submit the following two problems either with problem set 6 or problem set 7 .

Problem 6 (bonus). Consider an ideal I of $K\left[X_{1}, \ldots, X_{n}\right]$ and any monomial order. Show that $\operatorname{dim}(\mathcal{V}(I))$ is the maximal size of a subset $A \subseteq$ $\{1, \ldots, n\}$ such that every monomial of the form $\prod_{i \in A} X_{i}^{e_{i}}$ is a standard monomial.
Hint: First, think about how to prove this for the degree-lexicographic monomial order. (You might take some inspiration from the next problem.)

Problem 7 (bonus). Let I be an ideal of $K\left[X_{1}, \ldots, X_{n}\right]$. For any $d \geq 0$, let $R_{d} \subset K\left[X_{1}, \ldots, X_{n}\right]$ be the K-vector space of polynomials of degree at most d and let $\Gamma_{d}=R_{d} /\left(R_{d} \cap I\right)$.
a) Show that there is a polynomial $p \in \mathbb{Q}[D]$ and an integer $r \geq 0$ such that for all $d \geq r$, the K-vector space Γ_{d} has dimension $p(d)$. (This polynomial $p(D)$ is called the Hilbert polynomial of I.)
Hint: Use a Gröbner basis and the inclusion-exclusion principle.
b) Show that $\operatorname{dim}(\mathcal{V}(I))=\operatorname{deg}(p)$.

