Math 137: Algebraic Geometry Spring 2022

Problem set \#2

due Wednesday, February 9 at noon

Problem 1. Let A be an algebraic subset of K^{n} and let B be an algebraic subset of K^{m}. Show that the cartesian product $A \times B$ is an algebraic subset of $K^{n} \times K^{m}=K^{n+m}$.

Problem 2. Show that $X=\left\{\left(t, e^{t}\right) \mid t \in \mathbb{R}\right\}$ is not an algebraic subset of \mathbb{R}^{2}.

Problem 3. For each of the following ideals I of $\mathbb{C}[X, Y]$, is $1 \in I$? If so, show how to write 1 as a linear combination of the given generators.
a) $I=\left(X-Y, X^{2}+X Y-2 Y^{2}, X+Y-2\right)$
b) $I=\left(X^{2}+Y^{2}-1, X+Y-1, X-Y\right)$

Problem 4. Let I be an ideal of a polynomial ring $K\left[X_{1}, \ldots, X_{n}\right]$ over a field K. Let $J=\sqrt{I}$ be its radical. Show that $J^{n} \subseteq I$ for some $n \geq 1$.

Problem 5. Let K be any field and let A and B be algebraic subsets of K^{n}. Show that there exists an integer $m \geq n$ and an algebraic subset C of K^{m} such that the image of C under the projection $K^{m} \rightarrow K^{n}$ sending $\left(x_{1}, \ldots, x_{m}\right)$ to $\left(x_{1}, \ldots, x_{n}\right)$ is the set difference $A \backslash B$.

Problem 6. Give an example of an algebraic field extension L of a field K that is not module-finite (i.e. not a finite-dimensional vector space).

Problem 7. Let K be an infinite field and let $P_{1}, \ldots, P_{m} \neq(0, \ldots, 0)$ be m distinct points in K^{n}. Show that there is an invertible linear map $f: K^{n} \rightarrow$ K^{n} such that the $n \cdot m$ coordinates of the m points $f\left(P_{1}\right), \ldots, f\left(P_{m}\right)$ are distinct.

