Math 137: Algebraic Geometry Spring 2022

Problem set \#10

due Thursday, April 28 at noon

Throughout, K is assumed to be an algebraically closed field.

Problem 1. Let L_{1}, L_{2} be non-intersecting lines in \mathbb{P}^{3}. What is their join (the union of all lines connecting a point on L_{1} and a point on L_{2})?

Problem 2. Let A be a subset of \mathbb{P}^{n}. Show that the following are equivalent:
i) It is algebraic (meaning $A=\mathcal{V}_{\mathbb{P}^{n}}(S)$ for some set S of homogeneous polynomials).
ii) The subset $\varphi^{-1}(A)$ of K^{n} is algebraic for all affine chart maps φ : $K^{n} \rightarrow \mathbb{P}^{n}$.
iii) The subset $\varphi^{-1}(A)$ of K^{n} is algebraic for all standard affine chart maps $\varphi: K^{n} \rightarrow \mathbb{P}^{n}$.

Problem 3 (Decomposition into irreducible components). Show that any algebraic subset V of \mathbb{P}^{n} can be written uniquely as a union $V=V_{1} \cup \cdots \cup V_{m}$ of irreducible algebraic subsets V_{1}, \ldots, V_{m} of \mathbb{P}^{n} with $V_{i} \subsetneq V_{j}$ for all $i \neq j$.

Problem 4. Consider the Veronese map $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{d}$ of degree $d \geq 2$, given by $f([x: y])=\left[x^{d}: x^{d-1} y: \cdots: x y^{d-1}: y^{d}\right]$.
a) Show that its image is the algebraic set

$$
V:=\mathcal{V}_{\mathbb{P}^{d}}\left(\left\{Z_{k}^{2}-Z_{k-1} Z_{k+1} \mid 1 \leq k \leq d-1\right\} \cup\left\{Z_{0} Z_{d}-Z_{1} Z_{d-1}\right\}\right)
$$

b) Show that there is an inverse morphism $g: V \rightarrow \mathbb{P}^{1}$. (So $f: \mathbb{P}^{1} \rightarrow V$ is an isomorphism.)
c) Show that there do not exist homogeneous polynomials h_{0}, h_{1} in the variables Z_{0}, \ldots, Z_{d} of the same degree e such that $g\left(\left[z_{0}: \cdots: z_{d}\right]\right)=$ $\left[h_{0}\left(z_{0}, \ldots, z_{d}\right): h_{1}\left(z_{0}, \ldots, z_{d}\right)\right]$ for all $\left[z_{0}: \cdots: z_{d}\right] \in V$. (In particular, $h_{0}\left(z_{0}, \ldots, z_{d}\right)$ and $h_{1}\left(z_{0}, \ldots, z_{d}\right)$ are not simultaneously zero for any $\left.\left[z_{0}: \cdots: z_{d}\right] \in V.\right)$

Problem 5 (bonus). Consider a finite field \mathbb{F}_{q} of size q.
a) How many points are there in $\mathbb{P}_{\mathbb{F}_{q}}^{n}$?
b) For $0 \leq d \leq n$, how many d-dimensional linear subspaces does $\mathbb{P}_{\mathbb{F}_{q}}^{n}$ have?
c) For $0 \leq d^{\prime} \leq d \leq n$ and a d^{\prime}-dimensional linear subspace L of $\mathbb{P}_{\mathbb{F}_{q}}^{n}$, how many d-dimensional linear subspaces M containing L does $\mathbb{P}_{\mathbb{F}_{q}}^{n}$ have?

