Math 137: Algebraic Geometry Spring 2022

Problem set #1

due Wednesday, February 2 at noon

Problem 1. Let K be a field and let X be a set of m points in K^n .

- a) Show that there is a set $S \subseteq K[X_1, \ldots, X_n]$ of size at most n^m such that $X = \mathcal{V}(S)$.
- b) Assuming that $K = \mathbb{R}$, show that there is a polynomial $f \in K[X_1, \ldots, X_n]$ such that $X = \mathcal{V}(f)$.
- c) (bonus) Assuming that the field K is finite, show that there is a polynomial $f \in K[X_1, \ldots, X_n]$ such that $X = \mathcal{V}(f)$. (Hint: Use Fermat's little theorem / Lagrange's theorem.)
- d) (bonus) Assuming that the field K is infinite, show that there is a set $S \subseteq K[X_1, \ldots, X_n]$ of size at most n + 1 such that $X = \mathcal{V}(S)$.

Problem 2. Show that $A = \{(t, \sin(t)) \mid t \in \mathbb{R}\}$ is not an algebraic subset of \mathbb{R}^2 .

Problem 3. Consider the one-sheet hyperboloid

$$V = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = z^2 + 1\} \subseteq \mathbb{R}^3.$$

Prove that every point $P \in V$ lies on exactly two (straight) lines $l_1, l_2 \subseteq V$.

Problem 4. For every $n \ge 1$, show that the ideal $I = (X, Y)^n$ of K[X, Y] is not generated by n of its elements.

Problem 5. Let K be any field and let A be any subset of K^n . Show that $\mathcal{V}(\mathcal{I}(A))$ is the closure of A with respect to the Zariski topology. (This is called the Zariski closure of A.)