Math 223b: Algebraic Number Theory

Spring 2021

Problem set \#6
due Monday, March 22 at noon

We assume that K is a number field throughout this problem set.
Problem 1. Let E be an elliptic curve over K and let $P, Q \in E(K)$. Show that $h_{[Q]}(P) \approx_{Q} h_{[O]}(P-Q)$ (where the difference bound depends only on E and Q, but not on P).

Problem 2. a) Show that for any $T \in \mathbb{R}$, there are only finitely many points $P \in \mathbb{P}^{n}(K)$ with $H(P) \leqslant T$.
b) Let $N(T)$ be the number of points $P \in \mathbb{P}^{n}(\mathbb{Q})$ with $H(P) \leqslant T$. Show that $N(T)=T^{2}$ for $T \rightarrow \infty$.
c) (bonus) Let $N(T)$ be the number of points $P \in \mathbb{P}^{n}(K)$ with $H_{K}(P) \leqslant$ T. Show that $N(T) 二_{K} T^{(n+1)[K: \mathbb{Q}]}$ for $T \rightarrow \infty$.

Problem 3. Let C be any smooth projective curve over \mathbb{Q} of genus 0 with $C(\mathbb{Q}) \neq \varnothing$. Let $\varphi: C \rightarrow \mathbb{P}_{\mathbb{Q}}^{n}$ be a closed embedding. Show that there is an integer $m \geqslant 1$ such that $\#\{P \in C(\mathbb{Q}) \mid H(\varphi(P)) \leqslant T\}=T^{2 / m}$ for $T \rightarrow \infty$.

Problem 4. Consider a matrix $M \in \mathrm{GL}_{n+1}(K)$. It induces an automorphism φ of \mathbb{P}_{K}^{n}. Show that $h_{K}(\varphi(P)) \asymp_{M} h_{K}(P)$ for all $P \in \mathbb{P}_{K}^{n}(\bar{K})$.
Problem 5. a) Prove Corollary A.2.9: Let $f_{0}, \ldots, f_{m} \in K\left[X_{0}, \ldots, X_{n}\right]$ be homogeneous degree d polynomials, $A=\mathbb{P}_{K}^{n} \backslash V\left(f_{0}, \ldots, f_{m}\right)$ the set of points where f_{0}, \ldots, f_{m} don't all vanish, and let $\varphi: A \rightarrow \mathbb{P}_{K}^{m}$ be the morphism defined by f_{0}, \ldots, f_{m}. Then $h(\varphi(P)) \lesssim_{f_{0}, \ldots, f_{m}} d \cdot h(P)$ for all $P \in A(\bar{K})$.
b) Prove Corollary A.2.10: Let $f_{0}, \ldots, f_{m} \in K\left[X_{0}, \ldots, X_{n}\right]$ be homogeneous degree d polynomials, $W \subseteq \mathbb{P}_{K}^{n}$ a variety with $W \cap V\left(f_{0}, \ldots, f_{m}\right)=$ \varnothing, and let $\varphi: W \rightarrow \mathbb{P}_{K}^{m}$ be the morphism defined by f_{0}, \ldots, f_{m}. Then $h(\varphi(P)) \approx_{f_{0}, \ldots, f_{m}} d \cdot h(P)$ for all $P \in W(\bar{K})$.

Problem 6 (bonus). Let $f, g \in \mathbb{Z}[X, Y]$ be nonzero homogeneous polynomials of degree d and assume that every coefficient c of f or g satisfies
$|c| \leqslant R$. Assume that f and g have no common zero in $\mathbb{P}^{1}(\overline{\mathbb{Q}})$. Show that for all $x, y \in \mathbb{Z}$ with $\operatorname{gcd}(x, y)=1$, we have $\operatorname{gcd}(f(x, y), g(x, y)) \leqslant(2 d)!\cdot R^{2 d}$. (Hint: Resultant.)

