Math 223b: Algebraic Number Theory Spring 2021

Problem set \#5
due Monday, March 15 at noon

We assume that the field K has characteristic 0 throughout this problem set.

Problem 1. Let C be a smooth projective curve over K. Show that if there is a nonconstant morphism $\phi: \mathbb{P}_{K}^{1} \rightarrow C$ defined over K, then $C \cong \mathbb{P}_{K}^{1}$ over K.

Problem 2. Let G be an abelian group such that for all $m \geqslant 1$, the group $G[m]$ of m-torsion points has size m^{2}. Show that $G[m] \cong(\mathbb{Z} / m \mathbb{Z})^{2}$.

Problem 3. Consider an elliptic curve E given by the equation $Y^{2} Z=$ $X^{3}+a_{4} X Z^{2}+a_{6} Z^{3}$. Let $\psi: E \rightarrow \mathbb{P}^{1}$ be the morphism sending $[x: y: z] \neq O$ to $[x: z]$. Show that for every $m \geqslant 1$, there is a (unique) morphism $F_{m}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ such that $\psi \circ[m]=F_{m} \circ \psi$.

Problem 4 (Use a computer!). Consider the elliptic curve E given by the equation $Y^{2} Z=X^{3}+11 Z^{3}$ and the (non-torsion) point $P=[-14: 19: 8]$ on $E(\mathbb{Q})$. Let $\psi: E \rightarrow \mathbb{P}^{1}$ be the map sending $[x: y: z]$ to $[x: z]$. Define the height $H(Q) \in \mathbb{Z}$ of a point $Q \in \mathbb{P}^{n}(\mathbb{Q})$ as in the second lecture. For $m=1, \ldots, 20$, compute $\log (H(m \cdot P)) / m^{2}$ and $\log (H(\psi(m \cdot P))) / m^{2}$ (up to at least four decimal places).

Problem 5 (not graded, skip if you've done this before). Consider an elliptic curve E given by the equation $Y^{2} Z=X^{3}+a_{4} X Z^{2}+a_{6} Z^{3}$.
Let $P=[x: y: z] \in E$ with $P \neq[0: 1: 0]$
a) If $y \neq 0$, show that the point $2 P=\left[x^{\prime}: y^{\prime}: z^{\prime}\right]$ satisfies

$$
\left[x^{\prime}: z^{\prime}\right]=\left[x^{4}-2 a_{4} x^{2} z^{2}-8 a_{6} x z^{3}+a_{4}^{2} z^{4}: 4\left(x^{3}+a_{4} x z^{2}+a_{6} z^{3}\right) z\right] .
$$

b) Show that P is a three-torsion point if and only if

$$
3 x^{4}+6 a_{4} x^{2}+12 a_{6} x-a_{4}^{2}=0
$$

Problem 6 (bonus). Assume that K is algebraically closed. Let C be a smooth projective curve and assume that there is a divisor D on C with $0<\operatorname{deg}(D)<2 g_{C}-2$ and $l(D)=\frac{1}{2} \operatorname{deg}(D)+1$.
a) Show that there is a divisor D^{\prime} with $\operatorname{deg}(D)=2$ and $l(D)=2$. (Hint: Look at our proof that $l(D) \leqslant \frac{1}{2} \operatorname{deg}(D)+1$. Use downward induction.)
b) Show that there is a degree two morphism $C \rightarrow \mathbb{P}^{1}$.

