Math 223b: Algebraic Number Theory Spring 2021

Problem set #5

due Monday, March 15 at noon

We assume that the field K has characteristic 0 throughout this problem set.

Problem 1. Let *C* be a smooth projective curve over *K*. Show that if there is a nonconstant morphism $\phi : \mathbb{P}^1_K \to C$ defined over *K*, then $C \cong \mathbb{P}^1_K$ over *K*.

Problem 2. Let G be an abelian group such that for all $m \ge 1$, the group G[m] of m-torsion points has size m^2 . Show that $G[m] \cong (\mathbb{Z}/m\mathbb{Z})^2$.

Problem 3. Consider an elliptic curve E given by the equation $Y^2Z = X^3 + a_4XZ^2 + a_6Z^3$. Let $\psi: E \to \mathbb{P}^1$ be the morphism sending $[x:y:z] \neq O$ to [x:z]. Show that for every $m \ge 1$, there is a (unique) morphism $F_m: \mathbb{P}^1 \to \mathbb{P}^1$ such that $\psi \circ [m] = F_m \circ \psi$.

Problem 4 (Use a computer!). Consider the elliptic curve E given by the equation $Y^2Z = X^3 + 11Z^3$ and the (non-torsion) point P = [-14:19:8] on $E(\mathbb{Q})$. Let $\psi: E \to \mathbb{P}^1$ be the map sending [x:y:z] to [x:z]. Define the height $H(Q) \in \mathbb{Z}$ of a point $Q \in \mathbb{P}^n(\mathbb{Q})$ as in the second lecture. For $m = 1, \ldots, 20$, compute $\log(H(m \cdot P))/m^2$ and $\log(H(\psi(m \cdot P)))/m^2$ (up to at least four decimal places).

Problem 5 (not graded, skip if you've done this before). Consider an elliptic curve E given by the equation $Y^2Z = X^3 + a_4XZ^2 + a_6Z^3$.

Let $P = [x : y : z] \in E$ with $P \neq [0 : 1 : 0]$

a) If $y \neq 0$, show that the point 2P = [x' : y' : z'] satisfies

$$[x':z'] = [x^4 - 2a_4x^2z^2 - 8a_6xz^3 + a_4^2z^4 : 4(x^3 + a_4xz^2 + a_6z^3)z].$$

b) Show that P is a three-torsion point if and only if

$$3x^4 + 6a_4x^2 + 12a_6x - a_4^2 = 0.$$

Problem 6 (bonus). Assume that K is algebraically closed. Let C be a smooth projective curve and assume that there is a divisor D on C with $0 < \deg(D) < 2g_C - 2$ and $l(D) = \frac{1}{2} \deg(D) + 1$.

- a) Show that there is a divisor D' with $\deg(D) = 2$ and l(D) = 2. (Hint: Look at our proof that $l(D) \leq \frac{1}{2} \deg(D) + 1$. Use downward induction.)
- b) Show that there is a degree two morphism $C \to \mathbb{P}^1$.