Math 223b: Algebraic Number Theory Spring 2021

Problem set \#4
due Friday, March 5 at noon

We assume that the field K has characteristic 0 throughout this problem set.

Problem 1. Let $C \subseteq \mathbb{P}_{K}^{2}$ be a smooth projective curve of degree d (defined by a homogeneous polynomial in $K[X, Y, Z]$ of degree d). Let $l \subseteq \mathbb{P}_{K}^{2}$ be a line defined by a linear equation $r(X, Y, Z)=0$, which intersects C in d distinct points P_{1}, \ldots, P_{d}. Let $D=P_{1}+\cdots+P_{d}$.
a) Show that for $k \geqslant 0$, the set $L(k D)$ consists exactly of the functions of the form $f=\frac{a}{r^{k}}$ for a homogeneous polynomial $a(X, Y, Z)$ of degree k.
b) Show that we have

$$
l(k D)= \begin{cases}0, & k<0, \\ \frac{1}{2}(k+2)(k+1), & 0 \leqslant k<d, \\ \frac{1}{2} d(2 k-d+3), & k \geqslant d .\end{cases}
$$

c) Show that $g_{C}=\frac{1}{2}(d-1)(d-2)$.

Problem 2. Let C be a smooth projective curve of genus 0 defined over K and assume that $C(L) \neq \varnothing$ for some field extension L of K of odd degree. Show that $C(K) \neq \varnothing$.

Problem 3. Let C be a smooth curve of genus 1 defined over K and let $D \in \operatorname{Div}(C)$ be a divisor of degree 4. We obtain a closed embedding φ : $C \rightarrow \mathbb{P}_{K}^{3}$ associated to a basis of $L(D)$. Show that $\varphi(C)$ is the intersection $A \cap B$ of two hypersurfaces $A, B \subset \mathbb{P}_{K}^{3}$ of degree 2 .

Problem 4. Find a projective (irreducible) curve C over some field K and a rational function $f \in K(C)$ such that there is no morphism $\varphi: C \rightarrow \mathbb{P}_{K}^{1}$ with $\varphi(P)=[f(P): 1]$ for all points $P \in C(\bar{K})$ at which f is defined.

