Math 223b: Algebraic Number Theory Spring 2021

Problem set #2

due Friday, February 19 at noon

We assume that the field K has characteristic 0 throughout this problem set.

Problem 1. Let $f(X) \in K[X]$ be a nonconstant polynomial. Consider the affine variety $V = V(f(X) - Y^2) \subseteq \mathbb{A}^2_K$.

- a) Show that V is irreducible if and only if f(X) is not the square of a polynomial.
- b) Show that V is smooth if and only if the polynomial f(X) is squarefree.

Problem 2. Let $V \subseteq \mathbb{A}_K^n$ be an irreducible variety (defined over K) and let $S \subseteq V$ be the set of singular points of V.

- a) Show that S is an affine variety defined over K.
- b) (bonus) Show that $S \subsetneq V$.

Problem 3. Let *I* be an ideal of $K[X_1, \ldots, X_n]$ and $A = K[X_1, \ldots, X_n]/I$. Let *F* be the free *A*-module with basis (dX_1, \ldots, dX_n) and let Q = dI be the set of elements df of *F* with $f \in I$, where we let

$$\mathrm{d}f = \sum_{i=1}^{n} \frac{\partial f}{\partial X_i} \cdot \mathrm{d}X_i$$

- a) Show that Q is an A-module.
- b) Show that the module of differentials $\Omega_K(A)$ is isomorphic to F/Q (where the isomorphism sends the element dX_i of $\Omega_K(A)$ defined in class to the element dX_i of F/Q).
- c) Assuming that the ideal I is generated by f_1, \ldots, f_m , show that Q is generated by df_1, \ldots, df_m .

Problem 4. Consider the smooth curve $V = V(X^3 + 17 - Y^2) \subseteq \mathbb{A}^2_K$. Feel free to use a computer for the following problems, but try to do them without using Bézout's theorem.

- a) Compute the roots $P \in V$ and their multiplicities $v_{V,P}(f_1)$ of the function $f_1(X, Y) = X 3Y + 13$ on V.
- b) Compute the roots $P \in V$ and their multiplicities $v_{V,P}(f_2)$ of the function $f_2(X,Y) = 3X 8Y + 35$ on V.

Problem 5 (bonus). Let $V \subseteq \mathbb{A}^n_K$ be a smooth (irreducible) curve and let $P \in V(K)$. Show the following claims from class:

- a) The ring $\mathcal{O}_{V,P}$ is a discrete valuation ring with residue field K.
- b) Let $v_{V,P}$ be the normalized discrete valuation. An element f of $\mathcal{O}_{V,P}$ has $v_{V,P}(f) \ge 1$ if and only if the value f(P) is zero and has $v_{V,P}(f) \ge 2$ if and only if the derivative $Df(P) : T_{V,P} \cong K \to K$ is zero.