Math 223b: Algebraic Number Theory Spring 2021

Problem set \#2
due Friday, February 19 at noon

We assume that the field K has characteristic 0 throughout this problem set.

Problem 1. Let $f(X) \in K[X]$ be a nonconstant polynomial. Consider the affine variety $V=V\left(f(X)-Y^{2}\right) \subseteq \mathbb{A}_{K}^{2}$.
a) Show that V is irreducible if and only if $f(X)$ is not the square of a polynomial.
b) Show that V is smooth if and only if the polynomial $f(X)$ is squarefree.

Problem 2. Let $V \subseteq \mathbb{A}_{K}^{n}$ be an irreducible variety (defined over K) and let $S \subseteq V$ be the set of singular points of V.
a) Show that S is an affine variety defined over K.
b) (bonus) Show that $S \subsetneq V$.

Problem 3. Let I be an ideal of $K\left[X_{1}, \ldots, X_{n}\right]$ and $A=K\left[X_{1}, \ldots, X_{n}\right] / I$. Let F be the free A-module with basis ($\mathrm{d} X_{1}, \ldots, \mathrm{~d} X_{n}$) and let $Q=\mathrm{d} I$ be the set of elements $\mathrm{d} f$ of F with $f \in I$, where we let

$$
\mathrm{d} f=\sum_{i=1}^{n} \frac{\partial f}{\partial X_{i}} \cdot \mathrm{~d} X_{i} .
$$

a) Show that Q is an A-module.
b) Show that the module of differentials $\Omega_{K}(A)$ is isomorphic to F / Q (where the isomorphism sends the element $\mathrm{d} X_{i}$ of $\Omega_{K}(A)$ defined in class to the element $\mathrm{d} X_{i}$ of F / Q).
c) Assuming that the ideal I is generated by f_{1}, \ldots, f_{m}, show that Q is generated by $\mathrm{d} f_{1}, \ldots, \mathrm{~d} f_{m}$.

Problem 4. Consider the smooth curve $V=V\left(X^{3}+17-Y^{2}\right) \subseteq \mathbb{A}_{K}^{2}$. Feel free to use a computer for the following problems, but try to do them without using Bézout's theorem.
a) Compute the roots $P \in V$ and their multiplicities $v_{V, P}\left(f_{1}\right)$ of the function $f_{1}(X, Y)=X-3 Y+13$ on V.
b) Compute the roots $P \in V$ and their multiplicities $v_{V, P}\left(f_{2}\right)$ of the function $f_{2}(X, Y)=3 X-8 Y+35$ on V.

Problem 5 (bonus). Let $V \subseteq \mathbb{A}_{K}^{n}$ be a smooth (irreducible) curve and let $P \in V(K)$. Show the following claims from class:
a) The ring $\mathcal{O}_{V, P}$ is a discrete valuation ring with residue field K.
b) Let $v_{V, P}$ be the normalized discrete valuation. An element f of $\mathcal{O}_{V, P}$ has $v_{V, P}(f) \geqslant 1$ if and only if the value $f(P)$ is zero and has $v_{V, P}(f) \geqslant$ 2 if and only if the derivative $D f(P): T_{V, P} \cong K \rightarrow K$ is zero.

