Math 223b: Algebraic Number Theory Spring 2021

opring 2021

Problem set #10

due Wednesday, April 28 at noon

We assume that K is a field of characteristic zero throughout this problem set.

Problem 1. Show that the *r*-th symmetric power of \mathbb{A}^n is singular for all $r, n \ge 2$. (Hint: You don't need to completely determine the quotient variety for this problem!)

Problem 2. Let G be a finite group variety defined over K acting on an affine variety V defined over K such that the map $G \times V \to V$ sending (g, x) to gx is a morphism defined over K. Show that the quotient variety V^G and the quotient map $\pi: V \to V^G$ are also defined over K. (Hint: Consider the action of $\operatorname{Gal}(\overline{K}|K)$ on the polynomials defining V^G and π .)

Problem 3. Prove Lemma 3.3.11: Assume K is algebraically closed, $V \subseteq \mathbb{A}_{K}^{n}$ is irreducible and $v_{0} \in V$ a nonsingular point. Let $S \subseteq V$ be the union of the irreducible subvarieties $W \subsetneq V$ containing v_{0} which are nonsingular at v_{0} . Then, $\overline{S} = V$. (Hints: Only consider intersections of V with hyperplanes. Use the fact that the tangent cone T of a variety A at any point $a \in A$ satisfies $\dim(T) = \dim(A)$.)

Problem 4. Let $\varphi : V \to W$ be a morphism between irreducible affine varieties V, W over K. Assume that for every field extension L of K, there is a dense open subset $U \subseteq W_L$ such that each $Q \in U(L)$ has exactly one preimage $P \in V_L(L)$. Show that there is a rational map $\tau : W \dashrightarrow V$ such that $\varphi \circ \tau = \text{id}$ on a dense open subset $U' \subseteq W$.

Problem 5 (bonus; if you know representation theory of finite groups). Let G be a finite group acting on $\mathbb{A}_K^n = K^n$ via the representation $\rho: G \to \operatorname{GL}_n(K)$. For $d \ge 0$, let a_d be the dimension of the space of homogeneous polynomials of degree d in the ring of invariants $\Gamma(\mathbb{A}_K^n)^G \subseteq K[X_1, \ldots, X_n]$. Show the following identity of formal power series in Z:

$$\sum_{d\ge 1} a_d Z^d = \frac{1}{|G|} \sum_{g\in G} \frac{1}{\det(1-Z\rho_g)}.$$