# Math 223b: Algebraic Number Theory Spring 2021 

Problem set \#1
due Monday, February 8 at noon

Problem 1. Consider a matrix $M \in \mathrm{GL}_{n+1}(\mathbb{Q})$. It induces an automorphism $\varphi$ of the $n$-dimensional projective space $\mathbb{P}^{1}(\mathbb{Q})=\mathbb{Q}^{n+1} / \mathbb{Q}^{\times}$. Show that $H(\varphi(P)) \asymp_{M} H(P)$ for all $P \in \mathbb{P}^{n}(\mathbb{Q})$.
(In other words: Show that there exists a constant $C=C(M)>0$ such that $H(\varphi(P)) \geqslant C \cdot H(P)$ and $H(P) \geqslant C \cdot H(\varphi(P))$.)

Problem 2. Let $N(T)$ be the number of pairs $(x, y) \in \mathbb{Z}^{2}$ with $x^{2}-3 y^{2}=1$ and $|x|,|y| \leqslant T$. Show that $N(T)=\log T$ for $T \rightarrow \infty$.

Problem 3 (Dirichlet's approximation theorem). Prove that for any $\alpha \in \mathbb{R}$ and $N \geqslant 1$, there exists some rational number $\frac{p}{q} \in \mathbb{Q}$ with $|q| \leqslant N$ and $|p-q \alpha|<\frac{1}{N}$.

Problem 4 (Liouville's theorem). Let $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ be algebraic with minimal polynomial $f(X) \in \mathbb{Q}[X]$ of degree $n$. Show (without using Roth's theorem) that there exists $C>0$ such that for all $\frac{p}{q} \in \mathbb{Q}$ with $p, q \in \mathbb{Z}$, we have

$$
|p-q \alpha| \geqslant \frac{C}{|q|^{n-1}}
$$

Hint: Find an upper bound for the rational number $|f(p / q)|$.
Problem 5. Let $f(X, Y) \in \mathbb{Q}[X, Y]$ be a squarefree homogeneous polynomial of degree $n \geqslant 2$. Assume that $f(X, Y)$ has a root in $\mathbb{P}^{1}(\mathbb{C}) \backslash \mathbb{P}^{1}(\mathbb{R})$. Assuming Roth's theorem, show that for any $r \in \mathbb{Q}^{\times}$, the equation $f(x, y)=r$ has only finitely many solutions $(x, y) \in \mathbb{Z}^{2}$.

