Math 223b: Algebraic Number Theory

Spring 2021

Problem set #1

due Monday, February 8 at noon

Problem 1. Consider a matrix $M \in \operatorname{GL}_{n+1}(\mathbb{Q})$. It induces an automorphism φ of the *n*-dimensional projective space $\mathbb{P}^1(\mathbb{Q}) = \mathbb{Q}^{n+1}/\mathbb{Q}^{\times}$. Show that $H(\varphi(P)) \simeq_M H(P)$ for all $P \in \mathbb{P}^n(\mathbb{Q})$.

(In other words: Show that there exists a constant C = C(M) > 0 such that $H(\varphi(P)) \ge C \cdot H(P)$ and $H(P) \ge C \cdot H(\varphi(P))$.)

Problem 2. Let N(T) be the number of pairs $(x, y) \in \mathbb{Z}^2$ with $x^2 - 3y^2 = 1$ and $|x|, |y| \leq T$. Show that $N(T) \approx \log T$ for $T \to \infty$.

Problem 3 (Dirichlet's approximation theorem). Prove that for any $\alpha \in \mathbb{R}$ and $N \ge 1$, there exists some rational number $\frac{p}{q} \in \mathbb{Q}$ with $|q| \le N$ and $|p - q\alpha| < \frac{1}{N}$.

Problem 4 (Liouville's theorem). Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ be algebraic with minimal polynomial $f(X) \in \mathbb{Q}[X]$ of degree n. Show (without using Roth's theorem) that there exists C > 0 such that for all $\frac{p}{q} \in \mathbb{Q}$ with $p, q \in \mathbb{Z}$, we have

$$|p - q\alpha| \ge \frac{C}{|q|^{n-1}}.$$

Hint: Find an upper bound for the rational number |f(p/q)|.

Problem 5. Let $f(X,Y) \in \mathbb{Q}[X,Y]$ be a squarefree homogeneous polynomial of degree $n \ge 2$. Assume that f(X,Y) has a root in $\mathbb{P}^1(\mathbb{C}) \setminus \mathbb{P}^1(\mathbb{R})$. Assuming Roth's theorem, show that for any $r \in \mathbb{Q}^{\times}$, the equation f(x,y) = r has only finitely many solutions $(x, y) \in \mathbb{Z}^2$.