Math 137: Algebraic Geometry

Problem set \#9
due Friday, April 16 at noon

On this problem set, K is any field (not necessarily algebraically closed).
Any invertible linear map $g: K^{n+1} \rightarrow K^{n+1}$ induces a map $f: \mathbb{P}_{K}^{n} \rightarrow \mathbb{P}_{K}^{n}$ sending the line spanned by $x \in K^{n+1}$ to the line spanned by $g(x) \in K^{n+1}$. Maps $f: \mathbb{P}_{K}^{n} \rightarrow \mathbb{P}_{K}^{n}$ of this form are called projective transformations.

Problem 1. a) Consider the projective line $\mathbb{P}_{K}^{1}=K \sqcup\{\infty\}$. Let P, Q, R be three distinct points in \mathbb{P}_{K}^{1}. Show that there is a projective transformation $f: \mathbb{P}_{K}^{1} \rightarrow \mathbb{P}_{K}^{1}$ sending P to $0, Q$ to 1 , and R to ∞.
b) We say that points P_{1}, \ldots, P_{m} in \mathbb{P}_{K}^{n} are in general linear position if no $d+2$ of them lie on a d-dimensional linear subspace for any $0 \leqslant d \leqslant \min (m-2, n-1)$.
Let $P_{1}, \ldots, P_{n+2} \in \mathbb{P}_{K}^{n}$ be in general linear position and let $Q_{1}, \ldots, Q_{n+2} \in$ \mathbb{P}_{K}^{n} be in general linear position. Show that there is a unique projective transformation $f: \mathbb{P}_{K}^{n} \rightarrow \mathbb{P}_{K}^{n}$ sending P_{i} to Q_{i} for $i=1, \ldots, n+2$.

Problem 2. Assume that K is algebraically closed. Show that a polynomial $f \in K\left[X_{1}, \ldots, X_{n}\right]$ vanishes on the entire line spanned by a nonzero vector $x \in K^{n}$ if and only if all of its homogeneous parts f_{d} vanish at x.

Problem 3. Consider a finite field \mathbb{F}_{q} of size q.
a) How many points are there in $\mathbb{P}_{\mathbb{F}_{q}}^{n}$?
b) For $0 \leqslant d \leqslant n$, how many d-dimensional linear subspaces does $\mathbb{P}_{\mathbb{F}_{q}}^{n}$ have?
c) For $0 \leqslant d^{\prime} \leqslant d \leqslant n$ and a d^{\prime}-dimensional linear subspace L of $\mathbb{P}_{\mathbb{F}_{q}}^{n}$, how many d-dimensional linear subspaces M containing L does $\mathbb{P}_{\mathbb{F}_{q}}^{n}$ have?
Problem 4. Let $A=V(I)$ for an ideal I of $K\left[X_{1}, \ldots, X_{n}\right]$. Let $S \subseteq$ $K\left[X_{0}, \ldots, X_{n}\right]$ be the set of homogenizations of elements of I at X_{0}. Show that $V_{\mathbb{P}_{K}^{n}}(S)$ is the Zariski closure of the image of A under the 0 -th standard affine chart map φ_{0}.

Problem 5 (Pappus's hexagon theorem). Let $g \neq h$ be lines in \mathbb{P}_{K}^{2} that intersect in the point P. Let A, B, C be points on g and $A^{\prime}, B^{\prime}, C^{\prime}$ be points on h (all seven points $P, A, B, C, A^{\prime}, B^{\prime}, C^{\prime}$ distinct). Let Z be the point of intersection of the lines $A B^{\prime}$ and $A^{\prime} B$. Let Y be the point of intersection of the lines $A C^{\prime}$ and $A^{\prime} C$. Let X be the point of intersection of the lines $B C^{\prime}$ and $B^{\prime} C$. Show that X, Y, Z are colinear. (Hint: Apply a projective transformation to for example make $P=[0: 0: 1], A=[1: 0: 0]$, $B=[1: 0: 1], C=[r: 0: 1], A^{\prime}=[0: 1: 1], B^{\prime}=[0: 1: 0]$, $C^{\prime}=[0: s: 1]$. Then compute X, Y, Z.)

