Math 137: Algebraic Geometry

Spring 2021

Problem set \#7
due Friday, March 26 at noon

Problem 1. Let $V_{1}, \ldots, V_{m} \subseteq K^{n}$ be nonempty algebraic subsets. Show that

$$
\operatorname{dim}\left(V_{1} \cup \cdots \cup V_{m}\right)=\max \left(\operatorname{dim}\left(V_{1}\right), \ldots, \operatorname{dim}\left(V_{m}\right)\right)
$$

Problem 2 (Compare Problem 1 on problem set 1). Let $P_{1}, \ldots, P_{m} \in K^{n}$ (with $m \geqslant 1$). Show that there are n polynomials $f_{1}, \ldots, f_{n} \in K\left[X_{1}, \ldots, X_{n}\right]$ such that $\left\{P_{1}, \ldots, P_{m}\right\}=V\left(f_{1}, \ldots, f_{n}\right)$. (Hint: Use a projection and induction over n.)

Problem 3. a) Compute the join of the lines

$$
V=\left\{(x, y, z) \in K^{3} \mid y=z=0\right\}
$$

and

$$
W=\left\{(x, y, z) \in K^{3} \mid x=0, z=1\right\}
$$

in K^{3}. Is it Zariski dense in K^{3} ?
b) (double bonus) Show that there are one-dimensional irreducible algebraic subsets $V, W \subseteq \mathbb{C}^{3}$ whose join is \mathbb{C}^{3}.

Problem 4. Let $n, d \geqslant 1$, let $S \subseteq K^{n}$ be a finite set and let T be the vector space of polynomials $f \in K\left[X_{1}, \ldots, X_{n}\right]$ of degree at most d such that $S \subseteq V(f)$.
a) Show that if $|S| \geqslant 1$, then

$$
\operatorname{dim}(T) \leqslant\binom{ n+d}{n}-1
$$

b) Show that if $|S| \geqslant 2$, then

$$
\operatorname{dim}(T) \leqslant\binom{ n+d}{n}-2
$$

Problem 5. Let $n \geqslant 2$ and $d \geqslant 1$. Consider the vector space $F_{d} \cong K^{\binom{n+d}{n}}$ of polynomials f in $K\left[X_{1}, \ldots, X_{n}\right]$ of degree at most d. Show that there is a function $0 \neq r \in \Gamma\left(F_{d}\right)$ (a polynomial in the $\binom{n+d}{n}$ coefficients of f) such that $r(f)=0$ for all reducible polynomials $f \in F_{d}$.

Problem 6 (bonus). Consider the algebraic set

$$
W=\left\{(x, y, z) \in K^{3} \mid x^{2}+y^{2}+z^{2}=1\right\},
$$

the (dominant finite) projection $\varphi: W \rightarrow K^{2}$ sending (x, y, z) to (x, y), and the subset

$$
V=\left\{(x, y, z) \in W \mid z^{3}+x+1=0\right\} .
$$

Find a polynomial $g \in K[X, Y]$ such that $\varphi(V)=\left\{(x, y) \in K^{2} \mid g(x, y)=0\right\}$.

