Math 137: Algebraic Geometry Spring 2021 Problem set #6

due Friday, March 19 at noon

Problem 1. Which of the following morphisms are finite? (Say for $K = \mathbb{C}$.)

- a) The morphism $K^2 \to K$ sending (x, y) to $x^3y + xy^3 + 3x + 1$.
- b) The morphism $K \to K^2$ sending x to (x^2, x^3) .

Problem 2. Let $\varphi : V \to W$ be a morphism. Show that if V is the union of algebraic subsets V_1, \ldots, V_n and each restriction $\varphi : V_i \to W$ is a finite morphism, then φ is a finite morphism.

Problem 3. Let $V \subseteq K^n$ be a finite set and let W be any algebraic set. Show that every map $\varphi: V \to W$ is a finite morphism.

Problem 4. Let $\varphi: V \to W$ be a dominant morphism between irreducible algebraic sets. Assume $\Gamma(V)$ is generated by n elements as a $\varphi^*(\Gamma(W))$ -module. Show that the preimage of any point $Q \in W$ has size at most n.

Problem 5. Let $A \subseteq K^n$ and $B \subseteq K^m$ be irreducible algebraic subsets.

- a) Show that the algebraic subset $A \times B \subseteq K^{n+m}$ is irreducible.
- b) Show that $\dim(A \times B) = \dim(A) + \dim(B)$. (Hint: At least for " \geq ", use Noether normalization.)
- c) (bonus) Show that the ring $\Gamma(A \times B)$ is isomorphic to the tensor product $\Gamma(A) \otimes_K \Gamma(B)$.

Problem 6 (bonus). Say $K = \mathbb{C}$. Construct a surjective but nonfinite morphism $\varphi : V \to W$ between irreducible algebraic sets such that every $P \in W$ has only finitely many preimages. (You get half the points if V is reducible.)