Math 137: Algebraic Geometry

Spring 2021

Problem set #2

due Friday, February 19 at noon

Problem 1. Show that $X = \{(t, e^t) \mid t \in \mathbb{R}\}$ is not an algebraic subset of \mathbb{R}^2 .

Problem 2. Let K be any field and let A be any subset of K^n . Show that V(I(A)) is the closure of A with respect to the Zariski topology. (This is called the Zariski closure of A.)

Problem 3. Let I be an ideal of a polynomial ring $K[X_1, \ldots, X_n]$ over a field K. Let $J = \sqrt{I}$ be its radical. Show that $J^n \subseteq I$ for some $n \ge 1$.

Problem 4. Let K be any field and let A and B be algebraic subsets of K^n . Show that there exists an integer $m \ge n$ and an algebraic subset C of K^m such that the image of C under the projection $K^m \to K^n$ sending (x_1, \ldots, x_m) to (x_1, \ldots, x_n) is the set difference $A \setminus B$.

Problem 5. Give an example of an algebraic field extension L of a field K that is not module-finite (i.e. not a finite-dimensional vector space).

Problem 6 (bonus). Show that \mathbb{C} is not an algebraic field extension of \mathbb{Q} . (Hint: Show that the algebraic closure of \mathbb{Q} in \mathbb{C} is countable.)

Problem 7. Show Corollary 2.20: If S is an integral ring extension of R and T is an integral ring extension of S, then T is an integral ring extension of R.