Math 137: Algebraic Geometry

Spring 2021
Problem set \#11

due Friday, April 30 at noon

On this problem set, K is an algebraically closed field.
Problem 1. For $t \in K$, consider the polynomials $f=y^{2}-x(x-1)^{2}$ and $g_{t}=y-t(x+1)$ in $K[X, Y]$. Compute the points of intersection $P \in V\left(f, g_{t}\right)$ and the intersection numbers $I_{P}\left(f, g_{t}\right)$.

Problem 2. Let $\varphi: K^{2} \rightarrow K^{2}$ be a bijective affine linear map, let $f, g \in$ $K[X, Y]$ and $P \in K^{2}$. Show that $I_{\varphi(P)}(f, g)=I_{P}(f \circ \varphi, g \circ \varphi)$. (In other words, intersection numbers are invariant under affine linear transformations.)

Problem 3. Let $a, b \geqslant 1$ and $c \geqslant a b$. Furthermore, let $P \in K^{2}$. Show that there are polynomials $f, g \in K[X, Y]$ such that $m_{P}(f)=a$ and $m_{P}(g)=b$ and $I_{P}(f, g)=c$.

Problem 4. Let V be an irreducible algebraic subset of K^{n} and let $P \in V$. Show that there is a bijection between the set of irreducible algebraic subsets W of V containing P and the set of prime ideals J of $\mathcal{O}_{V, P}$, where a set W corresponds to the ideal of $\mathcal{O}_{V, P}$ generated by

$$
I_{V}(W):=\{f \in \Gamma(V) \mid \forall Q \in W: f(Q)=0\} \subseteq \Gamma(V) \subseteq \mathcal{O}_{V, P}
$$

