Math 137: Algebraic Geometry

Spring 2021

Problem set \#1

due Monday, February 8 at noon

Problem 1. Let K be a field and let X be a set of m points in K^{n}.
a) Show that there is a set $S \subseteq K\left[X_{1}, \ldots, X_{n}\right]$ of size at most n^{m} such that $X=V(S)$.
b) Assuming that $K=\mathbb{R}$, show that there is a polynomial $f \in K\left[X_{1}, \ldots, X_{n}\right]$ such that $X=V(f)$.
c) (bonus) Assuming that the field K is finite, show that there is a polynomial $f \in K\left[X_{1}, \ldots, X_{n}\right]$ such that $X=V(f)$. (Hint: Use Fermat's little theorem / Lagrange's theorem.)
d) (bonus) Assuming that the field K is infinite, show that there is a set $S \subseteq K\left[X_{1}, \ldots, X_{n}\right]$ of size at most $n+1$ such that $X=V(S)$.
Problem 2. Show that $X=\{(t, \sin (t)) \mid t \in \mathbb{R}\}$ is not an algebraic subset of \mathbb{R}^{2}.

Problem 3. Consider the one-sheet hyperboloid

$$
V=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=z^{2}+1\right\} \subseteq \mathbb{R}^{3} .
$$

Prove that every point $P \in V$ lies on exactly two (straight) lines $l_{1}, l_{2} \subseteq V$.
Problem 4. For every $n \geqslant 1$, show that the ideal $I=(X, Y)^{n}$ of $K[X, Y]$ is not generated by n of its elements.

Problem 5. a) Let A be an algebraic subset of K^{n} and let B be an algebraic subset of K^{m}. Show that the cartesian product $A \times B$ is an algebraic subset of $K^{n} \times K^{m}=K^{n+m}$.
b) Let $K=\mathbb{R}$. Show that the Zariski topology on $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$ is not the product topology arising from the Zariski topology on \mathbb{R}. (In other words, show that there is a Zariski closed subset of \mathbb{R}^{2} that is not the intersection of sets of the form $A \times B$, where A and B are Zariski closed subsets of \mathbb{R}.)

