# Math 288X: Algorithms in Algebra and Number Theory 

Fall 2021
Problem set \#9

As in class, we use the convention that $a \bmod n$ is the integer in $\{1, \ldots, n\}$ congruent to $a$ modulo $n$.

Problem 1. Let $f:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ be a uniformly random permutation. Show that the average length of the cycle containing 1 is $(n+1) / 2$.
Problem 2. Let $n \geqslant 1$ be a squarefree integer. Choose $a_{0}, \ldots, a_{n-1} \in \mathbb{Z} / n \mathbb{Z}$ uniformly at random and let $f(X)=a_{n-1} X^{n-1}+\cdots+a_{0}$. Show that the resulting random map $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ sending $x$ to $f(x)$ has the same probability distribution as the map constructed in Theorem 15.1.2.
Problem 3. Let $n=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$ with distinct primes $p_{1}, \ldots, p_{k}$. Let $q_{1}<$ $\cdots<q_{r}$ be primes not dividing $n$ let and $t \geqslant 1$ and $s \geqslant 2$ such that $q_{r}^{s t} \leqslant n$. Show that the number of residue classes $a \in(\mathbb{Z} / n \mathbb{Z})^{\times}$such that $\left(a^{s} \bmod n\right)$ is of the form $q_{1}^{f_{1}} \cdots q_{r}^{f_{r}}$ is at least

$$
\frac{r^{s t}}{s^{k(s-2)}(s t)!}
$$

Problem 4. Consider integers $k_{1}, \ldots, k_{n} \geqslant 2$ and distinct prime numbers $q_{1}, \ldots, q_{m}$. Let $q_{j}^{e_{i j}}$ be the largest power of $q_{j}$ dividing $k_{i}$. Show that we can compute a list of all $e_{i j}>0$ in quasi-linear time

$$
\widetilde{\mathcal{O}}\left(\log k_{1}+\cdots+\log k_{n}+\log q_{1}+\cdots+\log q_{m}\right)
$$

Hint: Use a product tree and remainder trees. Also, use the integer analog of Problem 3 on problem set 5 .

## Problem 5.

a) Show that you can implement Dixon's random squares method to run in time

$$
\widetilde{\mathcal{O}}(\exp (C \cdot \sqrt{(\log n)(\log \log n)}))
$$

with $C=3 / \sqrt{2}$.
Hint: Apply Problem 4 to speed up step 1.
b) (bonus) Improve the constant to $C=2$.

Hint: Use Wiedemann's algorithm (see for example chapter 12.4 in "Modern Computer Algebra") to speed up solving the system of linear equations in $\mathbb{F}_{2}$.

