Math 288X: Algorithms in Algebra and Number Theory

Fall 2021
Problem set \#7

Problem 1. We call a basis $\left(v_{1}, \ldots, v_{n}\right)$ of \mathbb{R}^{n} Gauß reduced if we have $\left|v_{1}\right| \leqslant \cdots \leqslant\left|v_{n}\right|$ and the Gram-Schmidt coefficients satisfy $\left|\mu_{i j}\right| \leqslant \frac{1}{2}$ for all $i<j$.
a) Show that every lattice Λ in \mathbb{R}^{n} has a Gauß reduced basis.
b) For $n \leqslant 4$, show that there is a constant $\delta_{n}>0$ such that if $\left(v_{1}, \ldots, v_{n}\right)$ is a Gauß reduced basis, then any nonzero vector in $\Lambda=\mathbb{Z} v_{1}+\cdots+\mathbb{Z} v_{n}$ has length at least $\delta \cdot\left|v_{1}\right|$.
c) For $n \geqslant 5$, show that there is no constant $\delta_{n}>0$ as in b).

Problem 2. Show that Algorithm 13.6 from class (computing an LLLreduced lattice basis) terminates for any basis v_{1}, \ldots, v_{n} of \mathbb{R}^{n}. (We only showed this for $v_{1}, \ldots, v_{n} \in \mathbb{Z}^{n}$.)

Problem 3. Show that for fixed n, given a basis $v_{1}, \ldots, v_{n} \in \mathbb{Z}^{n}$ satisfying $\left|\widetilde{v}_{1}\right|, \ldots,\left|v_{n}\right| \leqslant B$ of a lattice Λ, you can find a shortest vector in Λ in time $\widetilde{\mathcal{O}}_{n}\left((\log B)^{2}\right)$.

Problem 4. Let $n \geqslant 1$ and consider the cyclotomic field $K=\mathbb{Q}\left(\zeta_{n}\right)$. Its Galois group is $\operatorname{Gal}(K \mid \mathbb{Q}) \cong(\mathbb{Z} / n \mathbb{Z})^{\times}$, where an element $t \in(\mathbb{Z} / n \mathbb{Z})^{\times}$ corresponds to the automorphism σ_{t} sending ζ_{n} to ζ_{n}^{t}. Denote the n-th cyclotomic polynomial by ϕ_{n}. Let p be any prime number not dividing n.
a) Show that for any prime \mathfrak{p} of K dividing p, the Frobenius automorphism for $\mathfrak{p} \mid p$ is $\sigma_{p \bmod n}$.
b) Show that $p \mathcal{O}_{K}=\mathfrak{p}_{1} \cdots \mathfrak{p}_{k}$ with distinct primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ of K, where $f=\left[\mathcal{O}_{K} / \mathfrak{p}_{i}: \mathbb{F}_{p}\right]$ is the multiplicative order of p modulo n.
c) Show that $\phi_{n}(X) \equiv g_{1}(X) \cdots g_{k}(X) \bmod p$ with distinct irreducible polynomials $g_{1}, \ldots, g_{k} \in \mathbb{F}_{p}[X]$ of degree f. Can you show this directly without using b)?

Problem 5 (Experimental Chebotarev, bonus). Consider the following two polynomials:

$$
f(X)=X^{3}-2, \quad g(X)=X^{3}-3 X+1 .
$$

a) For each of the two polynomials, which splitting behavior modulo p occurs for which fraction of primes $p<10000$?
b) What are the Galois groups of the Galois closures of $\mathbb{Q}[X] /(f)$ and $\mathbb{Q}[X] /(g)$ over \mathbb{Q} ?
c) How to determine the splitting behavior of f, g modulo an unramified prime p from the corresponding Frobenius conjugacy class?
d) Which Frobenius conjugacy class occurs for which fraction of primes $p<10000$?

