Math 288X: Algorithms in Algebra and Number Theory

Fall 2021
Problem set \#5

Assume that we can do arithmetic in \mathbb{F}_{q} and choose an element uniformly at random in $\mathcal{O}(1)$.

Problem 1. Verify Lemma 8.3: $X^{q}-X=u_{q}(X) v_{q}(X)$, where

$$
\begin{gathered}
u_{q}(X)=X^{(q+1) / 2}-X, \quad v_{q}(X)=X^{(q-1) / 2}-1 \quad \text { if } q \text { is odd } \\
u_{q}(X)=\sum_{i=0}^{r-1} X^{2^{i}}, \quad v_{q}(X)=u_{q}(X)+1 \quad \text { if } q=2^{r} .
\end{gathered}
$$

Problem 2 (Berlekamp's algorithm). Let $f \in \mathbb{F}_{q}[X]$ be a squarefree polynomial.
a) Show that the number of irreducible factors of f is the dimension of the \mathbb{F}_{q}-vector space $\left\{t \in \mathbb{F}_{q}[X] /(f): t^{q}=t\right\}$.
b) Show that we can find the number of irreducible factors in time $\widetilde{\mathcal{O}}\left(n^{\omega}+\right.$ $n \log q$), where $\omega>2$ is a matrix multiplication exponent.
c) Let $P=\left\lceil\frac{q}{2}\right\rceil / q$. Show that there is a randomized algorithm that finds a splitting $f=g h$ in time $\widetilde{\mathcal{O}}\left(n^{\omega}+n \log q\right)$, where $\operatorname{deg}(g)=k$ with probability $\binom{n}{k} P^{k}(1-P)^{n-k}$.
d) Show that there is a randomized algorithm that factors f in expected time $\widetilde{\mathcal{O}}\left(n^{\omega}+n \log q\right)$.

Problem 3. Assume that we can do arithmetic in the field K in $\mathcal{O}(1)$. Let $f \in K[X]$ be a polynomial of degree n and let $g_{1}, \ldots, g_{k} \in K[X]$ be polynomials of degrees $m_{1}, \ldots, m_{k} \geqslant 1$. Show that we can compute the largest numbers $e_{1}, \ldots, e_{k} \geqslant 0$ such that $g_{i}^{e_{i}} \mid f$ for all $1 \leqslant i \leqslant n$ in time $\widetilde{\mathcal{O}}\left(n+m_{1}+\cdots+m_{k}\right)$.
Hint: First, find the smallest power of two greater than e_{i}. Then, use a binary search.

Problem 4. Let $f \in \mathbb{F}_{q}[X]$ be a polynomial of degree n with n distinct roots in \mathbb{F}_{q}. Let $P=\left\lceil\frac{q}{2}\right\rceil / q$ and let $u_{q}(X)$ and $v_{q}(X)$ as in Lemma 8.3. Pick $(a, b) \in \mathbb{F}_{q}^{2}$ uniformly at random. Write $f=g h$ with

$$
g=\operatorname{gcd}\left(f, u_{q}(a+b X)\right), \quad h=\operatorname{gcd}\left(f, v_{q}(a+b X)\right) .
$$

Show that $\mathbb{E}(\operatorname{deg}(g))=n P$ and $\operatorname{Var}(\operatorname{deg}(g))=n P(1-P)$. (Hence, we could have used random linear polynomials $a+b X$ instead of random polynomials $a_{0}+\cdots+a_{n-1} X^{n-1}$ in the algorithm for Lemma 8.3 and this would still suffice for Theorem 8.4. That's what Cohen does in Algorithm 3.4.6.)

Problem 5 (bonus). Let $f \in \mathbb{F}_{q}[X]$ be a squarefree polynomial of degree n with k irreducible factors.
a) Show that $\operatorname{disc}(f) \in \mathbb{F}_{q}^{\times}$is a square if and only if $k \equiv n \bmod 2$.

Hint: Let $r_{1}, \ldots, r_{n} \in \overline{\mathbb{F}_{q}}$ be the roots of f. Consider the action of the Frobenius automorphism $\varphi_{q}: \overline{\mathbb{F}_{q}} \rightarrow \overline{\mathbb{F}_{q}}$ on $\prod_{i<j}\left(r_{i}-r_{j}\right)$.
b) Show that we can compute $k \bmod 2$ in $\widetilde{\mathcal{O}}(n+\log q$). (I don't know how to compute k this quickly, even if f splits into linear factors!)

