Math 288X: Algorithms in Algebra and Number Theory

Fall 2021
Problem set \#3

Problem 1. Show that for a real number $x \in \mathbb{R}$, you can compute $1 / x$ up to a relative error of at most 2^{-n} in time $\mathcal{O}(n)$ (using only the first n nonzero digits of $x)$ on an $\mathcal{O}(\log n)$-bit RAM.

Problem 2 (Binary gcd). a) Let $x, y \in \mathbb{Z}$ with $v_{2}(x)<v_{2}(y)<\infty$. Show that there is a unique pair (q, r) satisfying $x=q y+r$ where $q \in \mathbb{Q}$ is a rational number whose denominator is a power of 2 satisfying $|q|<1$, and r is an integer with $v_{2}(r)>v_{2}(y)$. We will write $q=\lfloor x / y\rfloor_{2}$ and $r=x \bmod _{2} y$.
b) Show that you can compute $\lfloor x / y\rfloor_{2}$ and $x \bmod _{2} y$ for (binary) integers with $\leqslant n$ bits in time $\mathcal{O}(n)$ on an $\mathcal{O}(\log n)$-bit RAM.
c) Let a_{0} be an odd integer and let a_{1} be an even integer. As long as $a_{i+1} \neq 0$, let $a_{i+2}=a_{i} \bmod _{2} a_{i+1}$. Assume that a_{0} and a_{1} have at most n (binary) digits. Show that this process terminates after $\mathcal{O}(n)$ steps. (For some $k \leqslant \mathcal{O}(n)$, we have $a_{k+1}=0$.)
Hint: Think about how quickly the sequence $a_{0}, a_{1}, a_{2}, \ldots$ can grow. How quickly must it grow if $a_{i} \neq 0$?
d) Show that if $a_{k} \neq 0, a_{k+1}=0$, then the greatest common divisor of a_{0} and a_{1} is the odd part $a_{k} \cdot 2^{-v_{2}\left(a_{k}\right)}$ of a_{k}.

Like before, we assume that arithmetic in K can be done in $\mathcal{O}(1)$.
Problem 3. a) Let $f, g \in K[X]$ be polynomials of degree at most $n \geqslant 0$. Show that you can compute $\operatorname{gcd}(f, g)$ in time

$$
\mathcal{O}\left(\mu(n)\left(1+\log \left(\frac{n+1}{m+1}\right)\right)\right)
$$

where $m \geqslant 0$ is the degree of $\operatorname{gcd}(f, g)$.
b) Given polynomials $f_{1}, \ldots, f_{k} \in K[X]$ of degree at most n, show that you can compute $\operatorname{gcd}\left(f_{1}, \ldots, f_{k}\right)$ in time $\mathcal{O}(\mu(n)(k+\log (n+1)))$.

Problem 4 (Chinese remainders). Let $f_{1}, \ldots, f_{k}, r_{1}, \ldots, r_{k} \in K[X]$ be polynomials of degree at most $n \geqslant 0$ and assume that f_{1}, \ldots, f_{k} are pairwise coprime. Show that you can find a polynomial $g \in K[X]$ of degree less than $n k$ such that $g \equiv r_{i} \bmod f_{i}$ for all i in time $\mathcal{O}(\mu(n k) \log (n k) \log (k)$) (for large $n, k)$.

Problem 5. a) Show that for large n, the integer n ! has $\theta(n \log n)$ digits.
b) Show that you can compute n ! in time $\mathcal{O}(n \log n)$ on an $\mathcal{O}(\log n)$-bit RAM.
Hint: Compute $\binom{2 m}{m}=\frac{(2 m)!}{m!^{2}}$. How often does a prime p divide $\binom{2 m}{m}$?

