Math 288X: Algorithms in Algebra and Number Theory

Fall 2021
Problem set \#1

Problem 1 (Karatsuba's algorithm). Let R be a commutative ring. Consider the following algorithm:
function $\operatorname{Karatsuba}(f, g \in R[X])$
Let $n=\max (\operatorname{deg}(f), \operatorname{deg}(g))$.
Write $f=\sum_{i=0}^{n} a_{i} X^{i}$ and $g=\sum_{i=0}^{n} b_{i} X^{i}$.
if $n=0$ then
return $a_{0} \cdot b_{0}$.
else
Write $f(X)=p\left(X^{2}\right)+X \cdot q\left(X^{2}\right)$ and $g(X)=r\left(X^{2}\right)+X \cdot s\left(X^{2}\right)$
with polynomials $p, q, r, s \in R[X]$.
Compute $u=\operatorname{Karatsuba}(p, r)$.
Compute $v=\operatorname{Karatsuba}(q, s)$.
Compute $w=\operatorname{Karatsuba}(p+q, r+s)$.
return $u(X)+X \cdot(w(X)-u(X)-v(X))+X^{2} \cdot v(X)$.
end if
end function
a) Show that $\operatorname{Karatsuba}(f, g)=f \cdot g$.
b) Show that for large $n, \operatorname{Karatsuba}(f, g)$ has running time $\theta\left(n^{\log (3) / \log (2)}\right)$ on an $\mathcal{O}(\log n)$-bit RAM with $\mathcal{O}(1)$ arithmetic in R.
c) What's wrong with the following proof by induction that the running time is $\mathcal{O}(n+1)$? The claim is clear for $n=0$. Assume we've shown the claim for all $n^{\prime}<n$. Now, lines $8-10$ have running time $\mathcal{O}(3(\max (\operatorname{deg}(p), \operatorname{deg}(q), \operatorname{deg}(r), \operatorname{deg}(s))+1))=\mathcal{O}(n+1)$ by induction. The remaining lines have running time $\mathcal{O}(n+1)$, so the total running time is $\mathcal{O}(n+1)$, completing the induction.

Problem 2. Assume you're given an algorithm that can multiply two polynomials $f, g \in R[X]$ of degrees less than n in time $T(n)$.
a) Describe an algorithm that can multiply two polynomials $f, g \in R[X]$ of degrees less than n and m with $n \geqslant m \geqslant 1$ in time $\mathcal{O}\left(\frac{n}{m} \cdot T(m)\right)$.
b) Describe an algorithm that can multiply two polynomials $f, g \in R[X, Y]$ in which every monomial $X^{i} Y^{j}$ satisfies $i<n$ and $j<m$ in time $\mathcal{O}(T(2 n m))$.
(Hint: Consider the polynomials $f\left(X, X^{2 n-1}\right)$ and $g\left(X, X^{2 n-1}\right)$.)
Problem 3. a) Let $m \geqslant n \geqslant k \geqslant 0$ be integers and let $g \in \mathbb{F}_{p}[X]$ be a polynomial of degree n. Choose a polynomial $f \in \mathbb{F}_{p}[X]$ with $\operatorname{deg}(f)<m$ uniformly at random. Show that $\operatorname{deg}(f \bmod g)<k$ with probability $p^{-(n-k)}$.
b) For any polynomials f, g, let $s(f, g)$ be the number of steps taken by the Euclidean algorithm on f, g. (Specifically, $s(f, g)=0$ if $g=0$, and $s(f, g)=s(g, f \bmod g)+1$ otherwise.) Let $n \geqslant 1$. Choose polynomials $f, g \in \mathbb{F}_{p}[X]$ with $\operatorname{deg}(f), \operatorname{deg}(g)<n$ uniformly at random. Show that the expected value of $s(f, g)$ is $\Omega(n)$. (In other words: there is a constant $C>0$, independent of n and p, such that $\mathbb{E}(s(f, g)) \geqslant C \cdot n$.)

Problem 4. Show Lemma 1.1.1: Let $\zeta_{n} \in R$ be a root of the n-th cyclotomic polynomial ϕ_{n}. Then:
a) $\zeta_{n}^{n}=1$.
b) For any $d \mid n, \zeta_{n}^{d}$ is a root of $\phi_{n / d}$.
c) For any $a \in \mathbb{Z}$,

$$
\sum_{i \in \mathbb{Z} / n \mathbb{Z}} \zeta_{n}^{a i}=\left\{\begin{array}{lll}
0, & a \not \equiv 0 & \bmod n \\
n, & a \equiv 0 & \bmod n
\end{array}\right.
$$

