Math 288X: Algorithms in Algebra and Number Theory

Fall 2021

Problem set #1

Problem 1 (Karatsuba's algorithm). Let R be a commutative ring. Consider the following algorithm:

1: function KARATSUBA $(f, g \in R[X])$

- 2:
- Let $n = \max(\deg(f), \deg(g))$. Write $f = \sum_{i=0}^{n} a_i X^i$ and $g = \sum_{i=0}^{n} b_i X^i$. 3:
- if n = 0 then 4:
- 5: return $a_0 \cdot b_0$.
- 6: else

Write $f(X) = p(X^2) + X \cdot q(X^2)$ and $g(X) = r(X^2) + X \cdot s(X^2)$ 7: with polynomials $p, q, r, s \in R[X]$.

- Compute u = KARATSUBA(p, r). 8:
- 9: Compute v = KARATSUBA(q, s).
- Compute w = KARATSUBA(p+q, r+s).10:
- $\mathbf{return} \ u(X) + X \cdot (w(X) u(X) v(X)) + X^2 \cdot v(X).$ 11:
- end if 12:
- 13: end function
 - a) Show that KARATSUBA $(f, g) = f \cdot g$.
 - b) Show that for large n, KARATSUBA(f,g) has running time $\theta(n^{\log(3)/\log(2)})$ on an $\mathcal{O}(\log n)$ -bit RAM with $\mathcal{O}(1)$ arithmetic in R.
 - c) What's wrong with the following proof by induction that the running time is $\mathcal{O}(n+1)$? The claim is clear for n=0. Assume we've shown the claim for all n' < n. Now, lines 8–10 have running time $\mathcal{O}(3(\max(\deg(p), \deg(q), \deg(r), \deg(s)) + 1)) = \mathcal{O}(n+1)$ by induction. The remaining lines have running time $\mathcal{O}(n+1)$, so the total running time is $\mathcal{O}(n+1)$, completing the induction.

Problem 2. Assume you're given an algorithm that can multiply two polynomials $f, g \in R[X]$ of degrees less than n in time T(n).

- a) Describe an algorithm that can multiply two polynomials $f, g \in R[X]$ of degrees less than n and m with $n \ge m \ge 1$ in time $\mathcal{O}(\frac{n}{m} \cdot T(m))$.
- b) Describe an algorithm that can multiply two polynomials $f, g \in R[X, Y]$ in which every monomial $X^i Y^j$ satisfies i < n and j < m in time $\mathcal{O}(T(2nm))$. (Hint: Consider the polynomials $f(X, X^{2n-1})$ and $g(X, X^{2n-1})$.)
- **Problem 3.** a) Let $m \ge n \ge k \ge 0$ be integers and let $g \in \mathbb{F}_p[X]$ be a polynomial of degree n. Choose a polynomial $f \in \mathbb{F}_p[X]$ with $\deg(f) < m$ uniformly at random. Show that $\deg(f \mod g) < k$ with probability $p^{-(n-k)}$.
 - b) For any polynomials f, g, let s(f, g) be the number of steps taken by the Euclidean algorithm on f, g. (Specifically, s(f, g) = 0 if g = 0, and $s(f, g) = s(g, f \mod g) + 1$ otherwise.) Let $n \ge 1$. Choose polynomials $f, g \in \mathbb{F}_p[X]$ with $\deg(f), \deg(g) < n$ uniformly at random. Show that the expected value of s(f, g) is $\Omega(n)$. (In other words: there is a constant C > 0, independent of n and p, such that $\mathbb{E}(s(f, g)) \ge C \cdot n$.)

Problem 4. Show Lemma 1.1.1: Let $\zeta_n \in R$ be a root of the *n*-th cyclotomic polynomial ϕ_n . Then:

- a) $\zeta_n^n = 1.$
- b) For any $d \mid n, \zeta_n^d$ is a root of $\phi_{n/d}$.
- c) For any $a \in \mathbb{Z}$,

$$\sum_{i \in \mathbb{Z}/n\mathbb{Z}} \zeta_n^{ai} = \begin{cases} 0, & a \not\equiv 0 \mod n, \\ n, & a \equiv 0 \mod n. \end{cases}$$