Agoithuns in Hlgebra and Number Theory
Eabian Gundlach
gundlach@ math. harvard.edu
fabiangundeach.org/21-fall/2888y
OH: Ientatively TUTh 2-3pm room 233
References: of lourse inlomputational Hgabraic Number Theary, lohen (1993) Pari

- Hegorithmic Hegebraic Number Theory, Cohst-zassembers (1989)
- The efrt of lomputer Programming, vod. (Fundamental Agorithms)
+Vol. 2 (Seminumerical Ilgarithus),
shuth $(1973+1981) \quad$ [eaplier topics].
Implementation exercises:
projecteuler.net

HW ungraded
Final paper
1).. add integers? [Joke.-]
stupid schoolbooks addition:

$$
\begin{aligned}
& \left.\begin{array}{r}
1345825 \\
+\quad \text { 耇659076 }
\end{array}\right\} \\
& \begin{array}{l}
1659076 \\
+\quad 18994891
\end{array} \\
& \begin{array}{l}
+\quad 10010 \\
+18904801
\end{array} \\
& \begin{array}{r}
100100 \\
+\quad 18004901
\end{array} \\
& \begin{array}{l}
=180040000 \\
+100000
\end{array} \\
& \begin{array}{l}
+19004901
\end{array} \\
& \text { Wort case: } \Omega\left(u^{(}\right) \text {lines, }
\end{aligned}
$$

How rot to -
4)... multiply polynomials $f, g \in \mathbb{F}_{p}[X]$ given the coifs. of $f 19$, determine the coeffs of $(\mathrm{g}$):
schoolbook ult:

$$
f=\sum_{i=0}^{n} a_{i} x^{i}, \quad g=\sum_{j=0}^{m} b_{j} x^{j}
$$

$\leadsto f g=\sum a_{i} b_{j} x^{i+j}=\sum_{k=0}^{n+m} c_{k} x^{k}$

$$
\text { with } c_{k}=\sum_{\substack{i \leq n, j \leq m: \\ i+j=k}} a_{i} b_{j} \text {. }
$$

The total number of summands in c_{0}, \ldots, c_{n+m} is $n \cdot m$.
But we can actually compute $c_{01} \ldots, c_{n+m}$ in "roughly". linear" time

$$
\left.\mathcal{O}_{p_{i} \varepsilon}(n+m)^{1+\varepsilon}\right)
$$

3)... divide polynomials $f, g \in \mathbb{F}_{p}[X]$. (given the coifs. of $f, 9$, determine the caffs. of q, r

$$
\text { with } \left.f=g^{\text {w }} q+r, \operatorname{deg}(r)<\operatorname{deg}(g)\right) \text { : }
$$

Schoolbook division:
Let $n=\operatorname{deg}(f), m=\operatorname{deg}(g)$

$$
h_{n}:=f
$$

For $i=n, \ldots, m$ 需, let

$$
\begin{aligned}
& c_{T}:=\frac{x^{i}-\text { coff. of } h_{i}}{\underbrace{\text { leading coff. of } g}_{x^{m}-},} \\
& h_{i-1}:=h_{i}-c_{i} x^{i-m} \cdot g . \\
& \operatorname{deg}\left(h_{n}\right)=n \Rightarrow \operatorname{deg}\left(h_{n-1}\right) \leq n-1 \Rightarrow \operatorname{deg}\left(h_{n-2}\right) \leq n-z \\
& \Rightarrow \ldots \Rightarrow \operatorname{deg}\left(h_{m-1}\right) \leqslant m-1 \\
& f=\underbrace{\left.\sum_{i=m}^{n} c_{i} x^{i-m}\right)}_{\text {quotiontq }} \cdot g+\underbrace{h_{m+1}}_{\text {remainder }}
\end{aligned}
$$

\rightarrow running time $\theta_{p}((u-m) m)$. But ian le done in $\theta_{p}\left((u+m)^{1+\varepsilon}\right)$.

4 (\#)... find the ged of polynomials $f, g \in \mathbb{F}_{p}[X]$:

Euclidean algorithm:

$$
\begin{gathered}
a_{0}:=f \\
a_{1}:=g \\
a_{2}:=a_{0} \bmod a_{1} \\
a_{3}:=a_{1} \bmod a_{2} \\
\vdots \\
a_{i+2}:=a_{i} \bmod a_{i+1} \\
\vdots \\
a_{k}=\ldots \quad \neq 0 \\
a_{k+1}=0 \\
\operatorname{ged}(f, 9)=a_{k}
\end{gathered}
$$

The There are pol. f, g of degrees $n, n-1$ such that

$$
\begin{aligned}
& \operatorname{deg}\left(a_{i}\right)=n-i \quad, \quad k=n . \\
& \left(\text { lo } \sum \operatorname{deg}\left(a_{i}\right)=\theta^{\prime}\left(n^{2}\right) .\right)
\end{aligned}
$$

If Work backwards:

$$
\begin{align*}
& a_{n}:=1, a_{n-1}:=x, \\
& a_{i}:=a_{i+1}+x^{1} \cdot a_{i}, \text { for } i=n-2, \ldots, 0 . \\
& f:=a_{0}, g:=a_{1} .
\end{align*}
$$

but ged (f, g) can be computed in $\theta_{p}\left((n+m)^{\varepsilon}\right)$.
54) .. find $\operatorname{ged}(f, g)$ for $f, g \in Q[x]$:
W.l.o.g. $f, g \in \mathbb{Z}[x], \operatorname{deg}(f) \geq \operatorname{deg}(g)$.

Euclidean algorithm:

$$
\begin{aligned}
& a_{0}:=-f
\end{aligned}
$$

until

$$
\begin{aligned}
& a_{k+1}=0 . \\
\Rightarrow & \operatorname{ged}(f, g)=\alpha_{k e q f} .
\end{aligned}
$$

Shim For any (large), there are t pol. $f, g \in \mathbb{Z}(x)$ of degrees $n, n-1$ such that each corf. of f, g has $\theta(n)$ digits, $k=n$ and $a_{n} \in \epsilon^{2}$ has $\Omega\left((1+\sqrt{2})^{n}\right)$ digits.
of Let $b_{n}=1, b_{n-1}=x$,

$$
b_{i}=b_{i+1}+x \cdot b_{i+1} \text { for } i=n-z_{1}, \ldots, 0 \text {. }
$$

$\Rightarrow d \operatorname{deg}\left(b_{n-i}\right)=i$,

$$
\begin{aligned}
& \operatorname{lc}\left(b_{n-i}\right)=1 \\
& b_{i+1}=\left(b_{i-1} \bmod b_{i}\right)
\end{aligned}
$$

$\left(\right.$ maselfind of $\left.b_{i}\right) \leq$ (koeffol of $\left.b_{i}+1\right)+$ mosel cetflef

\Rightarrow Each cerf. of $b_{0}, b_{1} \in \mathbb{E}(x)$ has $\theta(n)$ digits.

Let $f=b_{0}, g=2 \cdot b_{1}$.
lain By induction, $a_{i}=2^{r_{i}} \cdot b_{i}$, where

$$
r_{0}=0, r_{1}=1, \quad r_{i+1}=2 r_{i+1}+r_{i} \text { : }
$$

Be by ind:

$$
\begin{aligned}
& =\left(2^{2 r_{i n} r_{i}} \cdot b_{i} \bmod b_{i+1}\right) \\
& \left.=2^{2 r_{i j} r_{i}} \cdot b_{i+2} \&\right\}
\end{aligned}
$$

We have
$\Gamma_{i}=\theta\left((1+\sqrt{2})^{i}\right)$, so in particular $a_{n}=2^{r n}$ has $\theta\left((1+\sqrt{2})^{n}\right)$ digit.


```
+ 1 * X^1 + 5 * X^0
a_1 = 2** X^9 + 1 * X^8 + 2 * X^7 + 2 * X^6 + 1 * X^5 + 2 * X^4 + 2 * X^3 + 2 * X^2 + 2 * X^1
+2 * X^0
a2 = - 3* X^8 - 6 * X^7 - 8 * X^6 - 7 * X^5 - 18 * X^4 - 18 * X^3 - 10 * X^2 - 22 * X^1 + 6
* X^0
a_3 = 24 * X^7 + 48* X^6 - 36 * X^5 + 72 * X^4 + 120 * X^3 - 24 * X^2 + 252 * X^1 - 36 * X^0
a_4 = - 7200 * X^6 + 1152 * X^5 - 1728 * X^4 - 12096 * X^3 + 12384 * X^2 - 15264 * X^1 + 3456
* X^0
a_5 = - 1734856704 * X^5 + 997318656 * X^4 + 3845947392 * X^3 + 740524032 * X^2 + 7963619328 *
X^1 - 576294912 * X^0
a_6 = - 58408660748489195520000 * X^4 - 655857649653317345280000 * X^3 -
6б6038346224070819840000 * X^2 - 80010588914523832320000 * X^1 + 13388059789083279360000 * X^0
a 7 = 8529455798803222416232339307500995912827456716800000000 * X^3 -
726961313894884840151011020364099725068284723200000000 * X^2 +
12047299305574646917622783790885700997842835865600000000 * X^I +
337129438656679591598394665444340006494247321600000000 * X^0
a 8 =
7599594390054607432864709535942269852898406230064084364169061461682007532582839448414444538766
95863107772638822400000000000000000000 * X^2 +
1597984990559247565932903117430723401512089792652232663589046921980206485675730428013523181085
966664947478403481600000000000000000000 * \^1 +
1176911662883991329365765977135044627459270056704063379858621559618882588055956358178152519652
011378502811202355200000000000000000000 * X^0
a_9 =
2\99225620576316007900622518688059723119305735435859826921836703987836014614104059681517753856
3381829903280441551180561269477705029821797035905418594215319029358766239513162464181051827585
6972144568026728845938149032562218719284479753663092673386683829137864617379107962880000000000
00000000000000000000000000000000000000 * X^1 +
16886141214956539786225622782337112749058971211177831871180008868805039630162777797292030539955
2393671611387989490394361183128380390047536071596103161250969147643560966003869086724263125016
3575836890896161081045250301578261940016006399274792020294525499580074073158613729280000000000
00000000000000000000000000000000000000 * X^0
a_10 =
1924858381375085554380884649278103377738530626880459029135908323517221387155732187052679568588
7604936439383600317487311931539136653013190708312248437208541914022842424353640180477203860662
9372067863039275501901013956187034256634147646812634864756586557568123083873624554651135464465
5374684073389602664610009707536732744625482978290307108652521848394025498070602400707690207644
1418892707917523417113618315801119512533274619448551153310997766354495952279233330066811543097
3188661003783107389578260436837168512780040760453682437452488700877070468178542434865223343441
1834672151608736518313706971328938069858572561202286370780995870900404456495652442870906880000
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000 * X^0
```

6) ... find the roots init of a pol. $f(x) \in \mathbb{F}_{p}[x]$ of degreen:
for
each $x \in \mathbb{F}_{P}$, check whether $f(x)=0$.
Time (on) even if you could do arithmetic in \mathbb{F}_{p} in $\theta(1)$.
lan be done $\theta\left((\log p) \cdot n \cdot(\log n)^{-}\right)$
with a noudeterministo
alg. in expected time
7) ... find the number of primes $p \leqslant n$:

Use the sieve of Erathosthenes
Bumming time $\theta\left(\sum_{p \leq n} \frac{n}{p}\right)=\theta(n \log \log n)$

Some problem that have no "obvious" algorithm at all. 8) Fado pol. in $\mathbb{Q} \times 3$.

9 (ind the ring of integers, class group, unit gray of a number field $K=Q[x] / f(x)$.

10 (8) Find the Galois closure of a field est. LIK and the Galois group.
11) Find the dimension, number of red. comp,... of a variety $\left\{P \in K^{n} \mid f_{1}(P)=\ldots=f_{m}(P)=0\right\}$.

Some problems are undecidable:
11) Does a given pol. $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ have a rook $\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{Z}^{n}$?

Our favorite confutational model:
b-bit random access machine ($R A M$)
2^{b} working register $, \ldots, r_{2-1}$ with values in $\left\{0_{1, \ldots, 2^{b}-1}^{i}\right.$ 2^{b} input
2^{b} output

A program consists of steps of the following form:

- " $r_{i}:=x^{\prime}$

$$
\begin{aligned}
& \text { " } r_{i}:=r_{j} \frac{t}{x} r_{k} " \quad\left(0 \leq_{i}, k<2^{b}\right) \quad \text { indef. if result } \&\left\{0, \ldots, 2^{b}-1\right\} \\
& \text { " } r_{i}:=\left[\frac{r_{j}}{r_{k}}\right]^{"} \\
& \text { " } r_{i}:=r_{j} \bmod r_{k} \\
& \text { " goo step } r_{k} " \quad(1 \leq t \leq s)
\end{aligned}
$$

- "if $r_{i}=$, go to step t, otherwise to step u " "
" " ${ }^{\prime} r_{i}<r_{j}$
- " $r_{i}:=r_{r_{j}}$ "
- " $r_{r_{i}}:=r_{j}$ "
- " $r_{i}:=i n r_{j}{ }^{4}$
- "out $\Gamma_{i}=r_{j}$ "
" halt"

Initially, registers except the aproviato input registers.
After the program halts, the output should be in the output registers.

Burning time $=$ total number of steps taboos Memory usage $=$

$$
\text { smallest } m \geqslant 0 \text { s. } A \text {, only }
$$

register r_{i}, in i, out i with $O \leq_{i}$ cm were used (rad fo or written t_{0}).

Upshot: "If's the intuitive running time". "On current computers, We'll write pseudocode...

Ese There is a program which adds two binary integers with $\leq u$ digit in time $\theta(u)$, memory $\theta(n)$ on an $\theta(n)$-bit RAM.
Input: encode $\sum_{i=0}^{n-1} a_{i} z^{i}, \sum_{i=0}^{\infty-1} b_{i} z^{i}$ as $n, a_{0}, \ldots, a_{n-1}, b_{0}, \ldots, b_{n-1}$
Output: Encode $\sum_{i=0}^{m-1} c_{i} 2^{i}$ as $m, c_{0}, \ldots, c_{m-1}$.
Ese Instead of binary encoding, use base $t . \leadsto$ cam add two integers with \leq_{n} beset digits in time $\theta(n)$, memory $\theta(n)$ on an $\theta($ 偣 $\max \left(\log _{n}, \log _{R_{A M}} t\right)-$ $R_{A M}$

Lome other interesting models:

- Turing machines
- Mulitage Turing machines
multiple RA M working in parallel communicating

$$
\text { (Cumming tine }=
$$

mask- number of steps taken by any of the RAM
(Of course, if we can do ssh. in time ofT) on k ir $R A M$, we can do it in time $v(k T)$ on one $R A M$. But the converse doesn't always hold!)

- Quantum R AM

1. Fast multiplication

Let R be a ring with unit (not necessarily commutative). We 'el assume the ring op. in R can be done in $\theta(1)$ by augmenting the ${ }^{6-r i t} A M$:

Registers can take values in $\left\{{\widetilde{0}, \cdots, 2^{b}-1}_{\in B}^{C}\right\} \cup R$.
The on. " $r_{i}:=r_{i}$ 志 r_{k} "
There's an or. " $r_{i}:=$ image of r_{j} underthe ham. $\mathbb{B} \rightarrow R^{\mathbb{D}}$ ".

Question 'Borkorgen', quickly can we multiply two pol, f g $9 \in R[x$, of degree $\sin ^{i=0}$ an $\sigma(\log n)$-bit RAM?
(Given coff. of $f, 9$, find self. of $f \cdot g$.)

Idea $\left(\operatorname{Som}^{\log } \log \left(\mathrm{fg}^{2}\right) \leq Z_{n}\right)$
\Rightarrow I\&Ris a field value $(f g)\left(p_{i}\right)=f\left(p_{i}\right) g\left(p_{i}\right)$ at $2_{n} 41$ (distinct) $P_{\text {om }}, P_{z_{n}} \in R$.
But how to compute $f\left(p_{i}\right), g$ for $i=d_{1}, \ldots, 2_{n}$? (evaluation. And how to compute f 9 from these $\overline{\mathrm{n}}+\mathrm{n}$, values? (interpolation)
Ideal This is easier for powers $p_{i}=s_{k}^{i}$ of a root of unity $J_{u}\left(\right.$ with $\left.k>\mathrm{Z}_{n}\right)$.
1.1. Fourier transform

Let $n \geqslant 1$ and assume that $S_{n} \in R$ is
prot of the n-th cyclotomic polynomial

$$
\phi_{n} \in \mathbb{T}[x] \underbrace{(\text { def!ety } y}_{\text {the moniopd. }} x^{n}-1=\prod_{d \ln } \phi_{d}(x) \text {). }
$$

the mons pol.
("a prim. n-th root of यn奄"

Selma 1.1 .1 a) $s_{n}^{n}=1$
f) For any dl_{n}, ζ_{n}^{d} is a root of $\phi_{n / d}$.
()
For any $a \in \mathbb{Z}$,

$$
\sum_{i \in \mathbb{Z} / n}^{~_{n}} \int_{n}^{a^{i}}= \begin{cases}0, & a \neq 0 \bmod n \\ n, & a \equiv 0 \bmod n .\end{cases}
$$

Def The Tourierftrarsform of $a=\left(a_{i}\right)_{i \in \mathbb{Z} / i_{i}}^{\in \prod_{i} R}($ vv.r.A. In $)$

$$
\begin{gathered}
\text { is } F_{s_{1}}(a)\left(b_{j}\right)_{j \in \mathbb{L} / \mathrm{Z}} \in \prod_{i} R \text {, where } \\
b_{j}=\sum_{i \in \mathbb{Z} / n \mathbb{E}} a_{i} J_{n}^{i j} \text {. }
\end{gathered}
$$

Lemma 1.1.2

$$
\mathcal{F}_{s_{n}}\left(\mathcal{F}_{J_{n}}(a)\right)=\left(n \cdot a_{-i}\right)_{i \in \mathbb{Z} / n \mathbb{Z}}
$$

Pf $F_{s_{n}}(a)=b$ with $b_{j}=\sum_{i} a_{i} S_{n}^{i j}$
cor In. 1 n n is invertible in R,
the problem of evaluating at roots of unity is equiv.
to the problem of interpolating from roots of unity.

Question Given^{n} " $a=\left(a_{i}\right)_{i}$, and S_{n}, how quickly can we compute $F_{s_{n}}(a)$? $e x$
(lesley - Suberyz' 19659 , yous)
Sem
Let $n=p q$ for integers $p, q \geq 1$. Pot $s_{p}=s_{n}^{*}, s_{q}=s_{n}^{p}$.
 q FT:
Let $a \in R^{n}$.

Then, $F_{s_{n}}(a)=\left(g_{\left.s_{j}\right)}\right)$ where $c_{j}=\sum_{c=0}^{p-1} b_{j}^{(i)} s_{n}^{c j}$ for $j \in \mathbb{Z} / n \mathbb{B}$
限
(e)

$$
\begin{aligned}
& b_{j}^{(c)}=\sum_{i=0}^{a-1} a_{i p+c} \sum_{q}^{i j}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \sum_{c} \phi^{(i)} \neq \sum_{i=0}^{k-1} a\left(t_{i}^{i n}\right. \\
& \Rightarrow \sum_{c=0}^{p-1} b_{j}^{(l)} y_{n}^{(j}=\sum_{l=0}^{p-1} \sum_{i=0}^{q-1} a_{i p+c} \jmath_{n}^{(i p+c) j} \\
& \overline{\overline{4}} \sum_{k=1}^{\operatorname{lng}} a_{k} J_{n}^{n j}
\end{aligned}
$$

any seitan he written uniquely as $k=i p+c$

Cor 1.1.4 (Radiser looley-Jukey alg.) Let $r \geqslant 2, e \geqslant 0, n=r^{e}$.

Then, you can compute $F_{r_{n}}(a)$ with $\theta\left(r^{e+1}(e+1)\right)$

$$
=\theta\left(n \cdot r \cdot\left(\log _{r} n+1\right)\right)
$$

add. /ult. op. in R.
(Shirk of r as fessed, usually $r=2 . \leadsto$ time $\theta(u \log n$)

Ide Apply the C-T sham. revisity) $p=r, q=r^{e-1}$.
so compute $F_{S_{p^{2}}}(a)$:

1) For $C=0, \ldots, r-1$:
 (time $\leq C_{r}$ -
2) Compute $1,5_{n}, \cdots, \mathrm{~g}_{n}^{n-1}$. by induction)
3) For $j=0, \ldots, r^{e}-1$: $\quad r^{-1} \quad($ thine $\theta(n)=v(r e))$
4) Compute $\left.c_{j}=\sum_{c=0}^{r^{-1}} b_{j}^{(c)} J_{n}^{c ;} \cdot\left(\operatorname{tamie}^{i} v(r)\right)\right\}\left(\operatorname{tanie} v\left(r^{e+1}\right)\right.$
5) Return $F_{J_{r} e}(a)=\left(c_{j}\right)_{j}$.

total time

$$
\begin{aligned}
& C r^{e+1} \cdot e+\theta\left(r^{e+1}\right) \\
& \leq C r^{e+1}(e+1) \\
& \text { if } C \geqslant \text { the constant in } \theta(\ldots) \text {. }
\end{aligned}
$$

Bunk the o
Et he salgerithinc only multan 1
All multiplications in R performed in the alg, are mull. by powers of S_{n}.
(f) The convolution of $\left.(a)_{i}\right)_{i}\left(b_{i}\right) \in \prod_{i \in \pi / n 2} R$ is $\{a * b\rangle:=(c)_{i} \in \prod_{i=a \pi_{n} n} R$,
where $c_{k}:=\sum_{\substack{i, j \in d / n z: \\ i \not j j=k}} a_{i} b_{j}$.
Lemma 1.1.1 6 Assume that S_{n} lies in the center of R (comuntes
a) $F_{s_{n}}(a * b)=F_{s_{n}}(a) \cdot F_{s_{n}}(b)$ with lv or $g \times R$).
b)

$$
n \cdot F_{s_{n}}(a-b)=\operatorname{lof}_{a} F_{s_{n}}(a) * F_{s_{n}}(b) \text {. }
$$

Bf $a)$ Let $c=a * b$.

$$
\sum_{k} c_{k} J_{n}^{k l}=\sum_{i, j} a_{i} b_{j} J_{n}^{(i+j) l}=\left(\sum_{i} a_{i} J_{n}^{i c}\right)\left(\sum_{j} b_{j} J_{n}^{j c}\right) .
$$

b)

$$
\begin{aligned}
& R H S=\sum_{\substack{r, s \\
r+s=l}}\left(\sum_{i} a_{i} y_{n}^{i r}\right)\left(\sum_{j} b_{j} y_{n}^{j s}\right) \\
& =\sum_{i, j} a_{i} b_{j} \sum_{\substack{r, s: \\
r+s=c}} j_{n}^{i r+j s} \\
& \begin{aligned}
&=\sum_{i, j} a_{i} b_{j} \underbrace{\sum_{r}^{y_{n}^{i r+j(l-r)}}}_{\sum_{n}^{j(+(i-j) r}} \\
&=\begin{array}{cc}
n \cdot \dot{s}_{n}^{j l} & \text { if } i=j \text { (made) } \\
0 & \text { else }
\end{array}
\end{aligned} \\
& =n \cdot S_{i} a_{i} b_{i} J_{n}^{i c}=\text { RHo }
\end{aligned}
$$

1.2. Multiplying polynomials

Shim 1.2.1 Let $r \geqslant 2$ If If r is invertible in R and R contains a root $J=s_{t}$ of $\phi_{t}(x)$, then given F_{r} " con multiply any two pol. $f, g \xi \in R[x]$ of degrees $<n$ in time $\theta_{r}(n \log n)$ on an $\theta(\log n)$-bit $R A M$.

Alg Let $f(x)=\sum_{i=0}^{t o-1} a_{i} x^{i}, g(x)=\sum_{i=0}^{t-1} b_{i} x^{i}$.
unite $a=\left(a_{i}\right)_{i} \in \prod_{i \in \mathbb{Z}} R, \quad b=\left(b_{i}\right)_{i}$

1) Use radiser looley-Sukey to compute the FT

$$
\hat{a}:=F_{3}(a), \quad \hat{b}:=F_{s}(b) \text {. }
$$

2) Compute $\hat{a} \cdot \hat{b}$:

For each jed/te, compute $\hat{a}_{j} \cdot \hat{b}_{j}$.
3) Use $c-\tau$ to compute

$$
c:=F_{y}(\hat{a} \cdot \hat{b})
$$

4) Return $\underbrace{\frac{1}{t}}_{\frac{1}{r^{k+1}}} \cdot \sum_{i=0}^{t-1} c_{i} x^{i}$.

Of lorrectiess

$$
\begin{gathered}
c=F(\hat{a} \cdot \hat{b})=F(F(a) \cdot F(b)) \\
=F(F(a * b)) \\
\operatorname{tenma} 1.1 .6 \pm)
\end{gathered}
$$

$$
\begin{aligned}
& \frac{=}{1} t \cdot(a * b) \\
& \text { Lamno 1.1.2 } \\
& \text { Sor } 0 \leq k<t \text {, } \\
& \Rightarrow \frac{1}{t} \cdot c_{k}=(a * b)_{k}=\sum_{i, j \in \mathbb{Z} / t \mathbb{Z}:} a_{i} b_{j}=\sum_{0 \leq i, j<t:} a_{i} b_{j} \\
& i+j=k \\
& \text { itj } \equiv \text { K madt } \\
& =\sum_{0 \leq i, j<t:} a_{i} b_{j} . \\
& \uparrow \quad i+j=k \\
& a_{i} b_{i}=0 \\
& \text { unless } 0 \leq i<n \leq r^{k}<\frac{1}{2} \cdot r^{k+1}=\frac{1}{2} \cdot t \\
& \Rightarrow \frac{1}{t} \cdot \sum_{k=0}^{t-1} c_{k} x^{k}=\sum_{i, j} a_{i} b_{j} x^{i+j}=f(x) \cdot g(x) \text {. }
\end{aligned}
$$

Geurning thine

$$
\operatorname{stap} 1) \vartheta_{r}(n \log n)
$$

2) $\theta(n)$
3) $\theta_{r}(n \log n)$
4) $\theta(n)$.

2 ow to get rid of the assumption that Φ_{t} has a root in R_{i} ?
Idea 1 Work in the ring $S=R[y] / \phi_{t}(y)$.

$$
\leadsto \zeta_{t}:=[Y] \in S \text { is a rook of } \phi_{t} \text {. }
$$

Problem: Adding two el. of S takestime $\theta\left(\operatorname{deg}\left(\phi_{t}\right)\right)=\theta(n)$. In $C-T$, we do $\theta(u \log n\rangle$ such additions.
\leadsto total thine $\theta\left(n^{2} \log n\right)$, worse than schoolbook multiplication!

Shm1.2.2 (Schönhage - Strassen)
Let r le a prime number. For large n, given
two poe. $F, g \in R[x]$ of degree $\langle n$, you can compute $r^{k+2} \cdot f g$ in time $\theta(n \log n \log \log n)$ on an $\theta(\log n\rangle-\operatorname{bit}$ RAM, where $k=\left\lceil\frac{1}{2} \log _{r} n\right\rceil$.

Cor 1.13 You can compute $f \cdot g$ in tine $\theta(n \log n \log \log n)$. [lear if r is imwertele in R (an dit inverse bnouna).]

Bf Apply the shim with $r=2,3$.
sender
\sim can compute $2^{r_{2}+2} \cdot f g, 3^{r_{3}+2} \cdot f g$
for er tog nt

$$
\begin{aligned}
& r_{2}=\left\lceil\frac{1}{2} \log _{2} n\right\rceil, \\
& r_{3}=\left\lceil\frac{1}{2} \log _{3} n\right\rceil .
\end{aligned}
$$

Since $2^{k_{2}+2}, 3^{k_{3}+3}$ are relatively prime, there exist $v, v \in \mathbb{Z}$ such that

$$
\begin{aligned}
& 1=v \cdot 2^{k+2}+\sqrt{3} 3^{k_{3}+2} \\
& \left(\text { and } b_{4} 0 \leq u<3^{k_{3}+2}=3^{\frac{1}{2} \log _{3} n+\theta(1)}=\theta(\sqrt{n})\right) .
\end{aligned}
$$

You can find u, v by trying all $O \leq v<3^{k_{3}+2}$ in time $\theta(\sqrt{n})$. (Or erse the extended Euclidean algorithm.)
Then, $f \cdot g=u \cdot\left(2^{r_{2}+2} \cdot f g\right)+v \cdot\left(3^{r_{3}+2} \cdot f g\right)$.

Alg for Thu 1.2.2 If $K \leqslant 3$, use the schoolbook algorithm.

$$
\theta_{r}^{\prime \prime}(\sqrt{n})^{\prime} \quad \theta_{r}^{\prime \prime}(\sqrt{n})
$$

1) Write $f(x)=\sum_{i=0}^{t-1} p_{i}(x) \cdot x$ ism
with $\operatorname{deg}\left(p_{i}\right)<m$ (possible because

$$
\left.m \cdot t=r^{2 k+2}>r^{2 k} \geqslant n\right) .
$$

Similarly, $g(x)=\sum_{i=0}^{t-1} q_{i}(x) \cdot x^{i \cdot m}$
with $\operatorname{deg}\left(q_{i}\right)<m$.

Let $S=R[Y] / \phi_{t}(y) \quad$ and $\operatorname{let} S:=\rho_{t}:=[y] \in S$. we have $\phi_{t}(y)=\frac{y^{k+2 t} t}{y^{k+1}}=1+y^{r^{k+1}}+\ldots+y^{(r-1)} r^{r^{k+1}}$.

$$
b=\left(b_{i}\right)_{i}
$$

$$
b_{i}=\left[q_{i}(y)\right] \in S
$$

(Note that $\operatorname{deg}\left(p_{i}\right), \operatorname{deg}\left(q_{i}\right)<m=r^{k}<(r-1) r^{k+1}=\operatorname{deg}\left(\phi_{t}\right)$, so p_{i}, q_{i} are already reduced mod ϕ_{t}.)
2) Use radiser looley-Jokey to compute the FT

$$
\hat{a}=F_{s}(a) \in \prod_{j} s, \quad \hat{b}=F_{s}(b) \in \prod_{j} s .
$$

In the C-T alg., we have to add elements of S and multiply el of S by powers of $S=[Y] \in S$. We do this by working in the ring

$$
S^{\prime}=R[Y] /\left(y^{t}-1\right)
$$

and onlyducing modulo $\phi_{t}(y)$ (which divides $y^{t}-1$) in the end.
edition in $S^{\prime}: \sum_{\substack { d=0 \\ \begin{subarray}{c}{0.0 d-n d y^{t}-1{ d = 0 \\ \begin{subarray} { c } { 0 . 0 d - n d y ^ { t } - 1 } }\end{subarray}}^{t-1} \sum_{d=0}^{d-1} y_{d}+y^{d}=\sum_{d=0}^{t-1}\left(u d+v_{d}\right) y^{d}$.
3)

For all $j \in \mathbb{Z} / \in \mathbb{Z}$ compute $\hat{a}_{j} \cdot \hat{b}_{j} \in S$ as follows:
Let $\hat{a}_{j}=\left[\hat{A}_{j}\right] \in S, \hat{b}_{j}=\left[Q_{j}\right] \in S$
with $\operatorname{deg}\left(A_{i}\right), \operatorname{deg}\left(N_{j}\right)<\operatorname{deg}\left(\phi_{t}\right)=(r-1) \cdot r^{k+1}<r^{k+2}$

$$
A_{j}(y) \cdot Q_{j}(y) \in R[y]
$$

b) Reduce $A_{j}(Y) \cdot Q_{j}(Y) \bmod \phi_{t}(Y)=1+y^{r^{k+1}+\ldots+y^{(r-1)} r^{k+1}}$ using the schoolbook algorithm.
4) Use looly-Sukey (line before) to compute the $F T$

$$
c=F_{J}(\hat{a} \cdot \hat{b}) \in \prod_{i \in \mathbb{Z} \notin \mathbb{Z}} s
$$

5) Let $c_{i}=\left[C_{i}\right] \in S$ with $C_{i} \in R(Y)$, $\operatorname{deg}\left(C_{i}\right)<\operatorname{deg}\left(\phi_{t}\right)$.

Return $\sum_{i=0}^{t-1} C_{i}(x) \cdot x^{i m} \quad(=t \cdot f(x) \cdot g(x))$.
1.3. Multiplying integers

Ohm 1,3.1 we can multiply two (binary integers x, y with $\leqslant n$ digits in time $O(n)$ on an $\theta(\log n)-b i t R_{A}$

Alg (sketch) w.e.e.g. $x, y \geqslant 0$.
w.e.o.g. $n=2^{k} \cdot k$ with $k \geq 1 . \quad(\Rightarrow k=\theta(\log n))$.

Write x, y in lase z^{k} :

$$
\begin{aligned}
& x=\sum_{i=0}^{2^{k}-1} a_{i} 2^{k i}, y=\sum b_{i} z^{k i} \\
& 0 \subseteq a_{i}, b_{i}<2^{k}
\end{aligned}
$$

Let $R=\mathbb{C}$, $t=z^{k+1}, S_{t}$ any prim. $t-t h$ root of unity.
By The 1.2.1, we can compute

$$
c_{b}:=\sum_{\substack{i, j \\ i+j=6}} a_{i} b ; \quad \text { for } k=0, \ldots, z^{k+1}-1
$$

in tome $\theta\left(2^{k} \cdot k\right)=\theta(n)$, assuming the operateirs in C en be done in time $\theta(1)$. It turns out shounlage- that it suffices to do the computatican in with shecelè nubs.- pounding intermediate results to $\theta(n)$ groderachem digits) and round the result c_{k} to the nearest integer. (These can be done in $\theta(1)$ on $\operatorname{an} \theta(\log n)$-bit $(1,1)$ Now $x \cdot y=\sum_{6=0}^{2^{k+1}-1} c k \cdot 2^{k c}$, where $0 \leq c_{6} \leq(l+1) \cdot 2^{k} \cdot 2^{k} \leq 2^{3 k+1}$ "EACTH has at most 4 digits in basel".

You can add these $2^{u t 1}$ integers with $\theta(\Lambda)$ nonsere digit in time $\theta\left(2^{k+1}\right)$.

Rump 1.3.2 Zearvey and van Leven recently showed That you cam multiply tho binary int. x, y with in $^{\prime}$ digits in time $\theta(n \log n)$ on a multitpe During machine. This is conjectured to be optimal.
[Thar algorithm also uses F FT and several ingenious trichs!]

REFERENCE: Fast multiplication audits applications Danial I. Bernstein
2. Quotients

Let K be a field and assume $\pm, x, 0^{-1}$ in K and the image of an integer under the how. $P \rightarrow K$ can be computed
in $\vartheta(1)$.
1, 1. exult inverse

Assume that we can multiply two pol. $\epsilon_{\text {g }} \in K(\lambda$ of degree < n in time $Q / \mu(n)$, where $\mu(n) \geq n, \mu(n+m) \geq \mu(n+\mu(m)$. (wse've shown that $\mu(n)=n \log n \log \log n$ wephesfor
Sham $21 \wedge$ Let $f \in\left(k[x) / x^{n}\right)^{x}$ with $f \equiv a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1}$ $\bmod x^{n}$.

$$
\left.\Leftrightarrow a_{0} \neq 0\right)
$$

We can compute
$f^{-1}\left(\bmod x^{n}\right)$ I $\left(=b_{0}+\cdots+b_{n-1} x^{n-1}\right)$ in thine
$\theta(\mu(n))$ on an $\theta(\log n)$-bit $R A M$.
Alg w.e.0.9. $n=2^{k}, k \geq 1$.
Recursively computed: $\left(f^{-1} \bmod x^{2^{k-1}}\right)$.
Return $h:=(2-f g) g \bmod x^{2^{k}}$.
Bf byitinduction. $g \equiv f \bmod x^{2^{k-1}}$.

$$
\begin{aligned}
& \Rightarrow f g \equiv 1 \bmod x^{2^{k-1}} \cdot \Rightarrow f_{9} \\
& \Rightarrow f h \equiv\left(2-f_{g}\right) \cdot f_{g} \bmod x^{2^{k-1}} \\
& \Rightarrow 1-f h \equiv\left(1-f_{g}\right)^{2} \equiv 0 \bmod x^{2^{k}} .
\end{aligned}
$$

Total time: $\underset{\leq q u}{ }\left(2^{k}\right)+\underset{\leq \frac{1}{2} \mu\left(2^{k}\right)}{\mu\left(2^{k-1}\right)}+\ldots+\underset{\leq \frac{1}{2^{k}} \mu\left(2^{k}\right)}{\mu(1)} \leq z \mu\left(2^{k}\right) \ll \mu(n)$.

Bunk Elis is Newton's approsecimation alg. for the function

$$
\begin{aligned}
& \varphi(t)=\frac{1}{t}-f . \\
& \sim t-\frac{\varphi(t)}{\varphi^{\prime}(t)}=t-\frac{\frac{1}{t}-f}{-\frac{1}{t^{2}}}=t+\left(t-f t^{2}\right)=(2-f t) t^{2}
\end{aligned}
$$

Efengex
Bulk The same algorithm can be used to invt an elements

$$
\left(x=\sum_{n=0}^{\infty} a_{n} \cdot p^{n}, a_{0}, a_{1}, \cdots \in\{0, \cdots, p-1\}, a_{0} \pm 0\right)
$$

(Just replace x by p everywhere!)

Punk Andabste need Similarly, Newton's method can be used to find the digits in time θ (up to a enticer of $\theta\left(z^{-n}\right)$
2.2. Quotient and remainder

She 2,2,1 given pol. $f, g \in K[x]$ po degree $<n$ (with $g \neq 0$), we can compute the quotient $q_{4} \in K(x)$ and remainder $r \in K(x)$ " $\left\lfloor\frac{f}{g}\right\rfloor$ frodg
(such that $f=g q+r$, $\operatorname{deg}(r)<\operatorname{dog}(g)$) in time $\theta(\mu(n)$) on on $O(\log n)-\operatorname{bit} R A M$.

Pf

$$
\begin{aligned}
& \text { Let } f(x)=x \cdot \tilde{f}\left(\frac{1}{x}\right) \quad, g(x)=x \cdot \tilde{g}\left(\frac{1}{x}\right), \\
& \tilde{f}, \tilde{g} \in U \quad \tilde{f}(0), \tilde{g}(0) \neq 0 . \\
& \left(\text { If } f(x)=a_{u} x+\ldots+a_{0}, \text { then } \tilde{f}(y)=a_{u}+a_{v-1} y_{t} \ldots+a_{0} \psi^{\mu} .\right)
\end{aligned}
$$

W.l.o.g. $u \geqslant V$. (Otherwise, $q=0, r=f$.)

and $\left.g(x) q(x)=x^{v} \tilde{g}\left(\frac{1}{x}\right) i\left(\frac{1}{x}\right)\right]$
Let $\tilde{q}(y)=\left(\tilde{f}(y) \cdot \tilde{g}(y)^{-1} \bmod y^{u-v+1}\right)$. (This can be computed in $\theta(\mu(u))$ because products and inverses canso)

Then, $q(X)=X^{u-v} \cdot \tilde{q}\left(\frac{1}{y}\right)$ is the quotient pol:

- I's a polynomial because deg $(\tilde{q}) \leq u-v$.
- since $y^{0}\left(f\left(\frac{1}{y}\right)-g\left(\frac{1}{y}\right) q\left(\frac{1}{y}\right)\right)=\tilde{f}(y)-\tilde{g}(y) \tilde{q}(p)$ is divisible by y^{v-v+1} in $K C Y$, we have $\operatorname{deg}(f-g q) \leqslant v-1$.
$r:=f-g q$ can abso be computed in $\theta(\mu(u))$.

A similar argument over \mathbb{R} shows:
I hum $2,2,2$ For (binary) integers x, y with $<n$ bits, $(y \neq 0)$ we pan compute $q=\left\lfloor\frac{x}{y}\right\rfloor$ and $(x \bmod y)$ in $\theta(u) \ldots$.

Pd Sell It suffices to compute $\frac{x}{y} \in \mathbb{R}$
to er er absolute precision 1, so relative precision $\sim 2^{-n}$.

Shisleaves
just $\leqslant 3$ integers q to toy.
3. Greatest common divisor

Decal the Euclidean algorithm:

$$
\begin{aligned}
& a_{0}=f \\
& a_{1}=g \\
& a_{i+2}=a_{i} \bmod a_{i+1}=a_{i}-\left\lfloor\frac{a_{i}}{a_{i+1}}\right\rfloor \cdot a_{i+1} \quad \text { until } a_{u+1}=0 . \\
& \Rightarrow \operatorname{ged}(f, 9)=a_{k} .
\end{aligned}
$$

Let $q_{i}=\left\lfloor\frac{a_{i}}{a_{i+1}}\right\rfloor$.

$$
\Rightarrow\binom{a_{i+1}}{a_{i+2}}=\underbrace{\left(\begin{array}{cc}
0 & 1 \\
1 & -a_{i}
\end{array}\right)\binom{a_{i}}{a_{i+1}} .}_{M_{i}}
$$

$$
\Rightarrow\binom{a_{i}}{a_{i}+\lambda}=M_{i-1} \cdots M_{0}\binom{a}{a}
$$

Once $\operatorname{deg}\left(q_{i}\right)=\operatorname{deg}\left(a_{i}\right)-\operatorname{deg}\left(a_{i+1}\right)$

$$
\text { until }\binom{g-d(f, g)}{0}=M_{k-1} \cdots M_{0}\left(\begin{array}{c}
q\left(\frac{q}{g}\right. \\
g \\
g
\end{array}\right)
$$

$$
\sum_{i} \operatorname{deg}\left(g_{i}\right)=\operatorname{deg}(f)-\operatorname{deg}(\operatorname{ged}(f, g)) \leq \operatorname{dog}(f)
$$

so at least the total number of coefficients in the $p d . q_{i}$ is linear (unlike the total number of conf. in the pol. a_{i}).

Bunk If $M \in G L_{2}(K[x])$ is a motorise with $\operatorname{det}(M)= \pm 1$ and such that $M\binom{f}{g}=\binom{h}{0}$, then $\operatorname{ged}(f, g)=h$.
If Let $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) . \Rightarrow \begin{aligned} & h=a f+b g_{1} \Rightarrow \operatorname{ged}(f, g) \mid h . \\ & 0=c f+g\end{aligned}$
On the other hand, $d h=a d f+b d g=(d d t(M)+b c) f+b d g$ $= \pm f+b(c f+d g)= \pm f$,
so $h \mid f$.
similarly, hlg.
$A-2 \cot \operatorname{lot} \operatorname{deg}(t), \operatorname{dog}(\phi)<n$.

Idea Recursively find approseimations to M : matrices $M_{\text {si. }} \operatorname{det}\left(M^{\prime}\right)= \pm 1$ and
$M^{\prime}\binom{t}{g}=\binom{t}{r}$ for some pol. t, r with smaller and smaller deg (t) (stating with $M^{\prime}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, where $r=0$, and finishing with $M^{\prime}=M$, where $r=0$.)

Lemma 3.1 $\operatorname{Let} f, g \in K(x)$, $\operatorname{deg}(f), \operatorname{deg}(g) \leq n$ and $\operatorname{let} k \geqslant 1$ with
and $M\binom{\left.L f / x^{5}\right\rfloor}{\left.L g / x^{5}\right\rfloor}=\binom{*}{*$ of $\operatorname{deg}<(n-5-u)=k}$.
Then,

$$
M\binom{f}{g}=\binom{*}{* \text { of dog, }<n-k} .
$$

(Moral: Io find M s.t. the lower entry has degree <nh, we orly need the tor 2 k coefficients of $\mathrm{f}, 9$.)
$B 1$

$$
\begin{aligned}
M\binom{f}{g} & =M\binom{x^{s} \cdot\left\langle f / x^{s}\right\rfloor+\left(f \bmod x^{s}\right)}{\ldots} \\
& =\underbrace{\log ^{*}\langle n-k)}_{\left(\begin{array}{c}
* \\
(\operatorname{dog}\langle n-s-k)
\end{array}\right.}
\end{aligned}
$$

The 3.2 (sher $n \notin \geqslant 1$. For polynomials $f, g \in K C x$ of degree $\leq n$, you can find a matrie $M \in G C_{2}^{ \pm 1}(K[x])$ whose entries have

$$
\left\{M \in \sigma L_{2}: \operatorname{det}(M)= \pm 1\right\}
$$

degree $\leqslant k$ and such that $M\binom{f}{g}=\binom{a}{b}$ for some pol. $a, b \in K(x)$ with $\operatorname{deg}(b) \leq n-k-1$
in time $\theta(n+\mu(k) \log k)$ (for large on an $\theta(\log n k)$ bit $R A M$.
Cor 3.3 (Fast extended Euclidean algorithm) $f_{1} g \in K[x)$ of degree $\leq n_{\text {n }} \frac{\text { in time } \theta(\mu(n) \log n) \text { (for large). } \text { poe. } d \text { st. } a=c f+d q}{}$
$P \rho$ and poe.c.ds.t. $a=c f+d g$
Bf of cor Apply the Thu with $k=n$.
Then, $M\binom{f}{g}=\binom{a}{0}$, so $\operatorname{ged}(f, g)=a$.
computable

$$
\text { in } \theta(\mu(n))
$$

If $M=\left(\begin{array}{ll}c & d \\ * & \alpha\end{array}\right)$, then $a=c f+d g$.
Cor 3.4 If ged $(f, g)=1$ you can find the inverse

of of loo

$$
\begin{aligned}
& d g \equiv a \quad \bmod f- \\
& \hat{Q} \\
& \text { constant pot.} \neq 0
\end{aligned}
$$

Alg for 3 hm 3.2 (stassen)
W.l.o.g. $k \leq n$. (otherwise, place k by n.)

If $n=k=0$, if's easy: Take $M=\left(\begin{array}{ll}0 & 1 \\ 1 & -f / g\end{array}\right)$.
lesfigare
constant
polynomials)
If $n>2 k$, we can, according to Summa 3.1, replace

$$
n \operatorname{by} 2 k, f \operatorname{by}\left(f / x^{n-2 k}\right), \quad g \operatorname{by}\left[g / x^{n-2 k}\right]
$$

$$
1 \leq k \leq n \leq 2 k . \quad \text { Let } k^{\prime}=\left\lfloor\frac{k}{2}\right\rfloor .
$$

1) Becursively apply the alg. To find $M_{1} s, t$.

$$
\begin{aligned}
& \text { imputable } \\
& \text { in on) }
\end{aligned}
$$

$$
\text { in of } k \text {) }
$$

2) If $=0$, wei re dore. Otherwise:

 both have
Sine $\theta(\mu(k))$ $\operatorname{deg} \leq n-k^{\prime}-1$.
3) Recursively apply the alg. To find $M_{3} \Delta A$.

$$
\begin{aligned}
& M_{3} M_{2} M_{1}\binom{f}{g}=M_{3}\binom{d}{c}=\binom{a}{b} \text { with } \operatorname{dog}(b) \leq\left(n-k^{\prime}-1\right)-k^{\prime}-1 \\
& \leq n-k-1 \text {. } \\
& \sin e \leq \frac{C}{2} \cdot \mu(u)\left(\log _{z}(k)-1\right) \\
& \text { total: } C \mu(k)\left(\log _{2} u-1\right)+\widehat{<(\mu(k))} \\
& \leq C \mu(u) R_{0, g} u \text { for puff. large C. } B
\end{aligned}
$$

$$
\begin{aligned}
& M_{1}\binom{\epsilon}{g}=\binom{c}{d} \text { with } \operatorname{deg}\left(\begin{array}{l}
d
\end{array}\right) \leq n-k^{\prime}-1 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{c}{2} \mu(b)\left(\log \operatorname{lig}_{2}(k-1)\right)
\end{aligned}
$$

Out She algorithm also computes the quotient polynomials q_{i} that aria in the Euclidean alg. A. A.

$$
\begin{aligned}
& M=\left(\begin{array}{ll}
0 & 1 \\
1 & q_{r}
\end{array}\right) \cdots\left(\begin{array}{ll}
0 & 1 \\
1 & q_{1}
\end{array}\right) . \\
& \frac{f}{g}=q_{1}+\frac{1}{q_{2}+\frac{1}{q_{3}^{\prime \prime} q_{r}}}
\end{aligned}
$$

Forbinary integer x, y with $\leq n$ bit, we can compute $a=\operatorname{ged}(x, y)$, and $c_{1} d$ s.t. $a=c x+d y$ in time $\theta(n \log n)$ on an $V(\log n)-b i t R A M$.
B81 Similar polynomials, replacing deg (f) by log $\mid f 1$.
Olaf It 's more complicated:
Qolynomials satisfy the nicerinig. $\operatorname{dog}(f+g) \leq \operatorname{mase}(\operatorname{dog}(f), \operatorname{deg}(g))$,
 weary have
\rightarrow fermat 3.1 fails" slightly".
\& (arch. triangle inc.)

But you can carefully deal with it!
 than mare $(\log |x|, \log |y|)$

If 2 (Itehlé-2immerman: \&Binary Recursive GCD algorithm)
Idea: Instead of the usual division with remainder

$$
\text { (instead of the usual division with rect } x=q y+r \text { with } q, r \in \mathbb{Z}, 0 \leq r \mid M \text {) }
$$

use generalised binary division

$$
\begin{aligned}
& \text { (} x=q y+r \text { with } r \in \mathbb{Z}, v_{2}(r)>v_{2}(y), q \in \mathbb{Q},|q|<1 \text {, } \\
& \text { denominator of } \\
& q \text { is a over } \\
& \text { where } v_{2}(x)<v_{2}(y) \\
& \text { of } 2 \text {) }
\end{aligned}
$$

The Euclidean algorithm still terminates, with this division. $\operatorname{cas} \theta(u)$
There is something analogous to Lemma 3.1 that can be used to speed up the algorithm very similar to She 3.2.
4. East exponentiation

Chm. 1 Let 6 be a semigroup and assume we can nuttily two l. of 6 ince(1). Then, we can compute x^{k} for $x \in \sigma$ ard $K \geqslant 1$ in time $V(\log k)$ (forlorgen) on an $\theta(\log k)-b i t R A M$.
Pf If $21 n$, then $x^{k}=\left(x^{k / 2}\right)^{2}$.

$$
\text { If } 2+n \text {, then } x^{k}=\underbrace{(k-1) / 2}_{\substack{\text { countable } \\ \text { ins } \\\left(\log _{2} k \\ \\ \\ \\=c\left(\log _{2} k-1\right)\right.}})^{2} \cdot x
$$

(See also of 2 on following page.)
Chm 4.2 we can compute any binary integer) $\in Q$ with $\leqslant n$ bits and $h \rightarrow \wedge^{\prime 2}$ in time $\theta(n k)$ on an $\theta(\log (n k))$-bit RAM.
Of As for $\operatorname{sem} 4.1$, using that $x^{4 k}$ has $\theta(n k)$ bits, so after computing $x^{\lfloor k / 2\rfloor}$ recursively in time $\subseteq C n \cdot \frac{k}{2}$, we can compute x^{k}. in time $V(n k)$. \leadsto total time: geom. series,
Bunks the obvious method $\left(x^{k}=x^{k-1} \cdot x\right)$ would'have running time $\theta\left(n k^{2}\right)$ because the nr. of digit in step i is $\sim n i$ and there are k steps.

QR 2 SUNrite $k=\sum_{i=0}^{m} a_{i} z^{i}, \quad a_{i} \subset\{0,1\}$

$$
\Rightarrow x^{k}=\prod_{\substack{i=1 \\ a_{i}=1}} x^{2^{i}} .
$$

Compute $b_{i}:=x^{2 i}$ for $i=0,1, m$ using the recurence $b_{i+1}=b_{i}^{2}$.
shem, lompute the product $\prod_{\substack{i: \\ a_{i}=1}} b_{i}$.

Bunk similar for (Q, \cdot) if you allow nonreduced $\left(M_{n}(Q), \cdot\right)$ fractions $\frac{p}{q}$ (reducing the \% final result would take time $\theta(n k \log (n k)))$.

$$
(k[x], \cdot),(k(x), \cdot),
$$

Warning You can often do faster!
E.g. for the semigroup $(Q,+)$: you can compute $k \times \operatorname{in} \theta(n+\log k)$.
bor 4.3 orffoce can compute the n-th Fibonaci number F_{n} $\operatorname{in}_{\rightarrow, \text { You can }} \theta(n)$
$\left.D_{0}\right)$ You can compute F_{u} "̈nodp in time $\theta_{p}(\log u)$.
Bf

$$
\begin{aligned}
& \binom{F_{n+1}}{F_{n+2}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\binom{F_{n}}{F_{n+1}} \\
& \Rightarrow\binom{F_{n}}{F_{n+1}}=\underbrace{\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{n}}\binom{0}{1}
\end{aligned}
$$

$\theta(n)-$ Bit matrix

$$
\begin{aligned}
& \text { computable } \\
& \text { in } O(n) \text {. }
\end{aligned}
$$

$$
\text { in } \theta(n) \text {. }
$$

5. Multiplying more than two things

Chm 5.1 we can compute the prod. $x_{1} \ldots x_{u}$ for any bin. int. x_{1}, \ldots, x_{k} with \leq_{n} bits in time $O(n k \log h)$ on an $\theta(\log (n h))-b i t ~ R A M$.
Pf

$$
o\left(n-r^{a}\right) \text { bits }
$$

$$
\begin{aligned}
\text { tune } & \leq C_{n} \cdot 2^{a}(a-1)+\theta\left(n \cdot 2^{a} a\right) \\
& \leq C_{n} 2^{a} a \text { for large } C .
\end{aligned}
$$

Amer Obvious alg : thine $\theta\left(n k^{2}\right)$
Bunk Similar for $(Q, \cdot),\left(M_{n}(Q),-\right)$, ceo $(Q,+)$,..
Gunk There are better alg of or $(\mathbb{Q},+)$,

Son't reduce intermediate results! (Computing the ged would tale nonlinear thine.

$$
\begin{aligned}
& \text { w.l.0.9. } k=z^{a} \text {. }
\end{aligned}
$$

Cor 5.2 Given integers $\times 1,-x x$ with $\leq n$ bits, you can compute the numerator and denom. P, s of a action

$$
\frac{p}{q}=x_{1}+\frac{1}{x_{2}+\frac{1}{\ddots} \frac{1}{x_{k}}} \text { in } \theta(n k \log (k)) \text { on } \operatorname{an} \theta(\log (n k))-\operatorname{bit} R A M \text {. }
$$

Pf By induction,

$$
\binom{p}{q}=\underbrace{\text { in } \theta(n k \log l e)}_{\text {compute this prod. }} \text { (ll} \begin{array}{ll}
x_{1} & 1 \\
1 & 0
\end{array}) \cdots\left(\begin{array}{cc}
x_{u} & 1 \\
1 & 0
\end{array}\right) ~\binom{1}{0} .
$$

for 5.3
Given integers a_{0}, \ldots, a_{n} and x with $\leq_{\text {in }}$ bits, you can compute $\sum_{i=0}^{n} a_{i} x^{i}$ (imbinary) in timice $(m n \log n)$.

Pf By induction,

$$
\binom{\sum_{i=0}^{n} a_{i} x^{i}}{x^{n+1}}=\left(\begin{array}{ll}
1 & a_{n} \\
0 & x
\end{array}\right) \cdots\left(\begin{array}{ll}
1 & a_{0} \\
0 & x
\end{array}\right)\binom{0}{1}
$$

What if x_{1}, \ldots, x_{k} have very different numbers of bots?
Shim 5.4 Let $x_{1, \ldots, x_{n}}$ be integers with $n_{1, \ldots,} n_{k}$ bits.
We can compute $x_{1} \ldots x_{k}$ in time

$$
\begin{aligned}
& \text { We can compute } x_{1} \cdots x_{k} \text { in time } \\
& V\left(\sum_{i=1}^{n} n_{i}\left(\log \frac{n_{1}+\cdots+n_{n}}{n_{i}}+1\right)\right) \text { on an } \theta\left(\log _{1}\left(\frac{n_{i}}{n}\right)-\operatorname{bit} R A M .\right.
\end{aligned}
$$

Bf
start with the list $x_{1, \ldots}, x_{n}$.
In each step , replace the two integers ${ }^{*}$ Prom the list with the smallestlog|t| by their product, until there's just one number.
\rightarrow Product tree

Gunning time $\leq \sum_{i} \log \left|x_{i}\right| \cdot$ (distance of x_{i} from root)
$=\left[\begin{array}{l}\left(n_{n}+\cdots+u_{4}\right) \text { tines the } \\ \text { average length of Reuffman code over }\end{array}\right.$ x_{1}, \ldots, x_{n} if the probability of x_{i} is $p_{i}=\frac{n_{i}}{n_{1}+\ldots+n_{k}}$

$$
=\left(u_{1}+\ldots+u_{n}\right) \cdot[\underbrace{\text { Shannon entropy }}_{\sum p_{i} \log \frac{1}{p_{i}}}+\theta(1)]
$$

\square
A Theorem about
sham on codes
(Shaman : Mathenstical "Ihamor: Mathematical

She 5.5 Let x be an int, with n bit and let y_{1}, \ldots, y_{k} be integers with $m_{11} \cdots, m_{k} b$ bit.
We can compute $x \bmod y_{1}, \ldots, x \bmod y_{k}$ in time

$$
O\left(n+\sum m_{i}\left(\log \frac{m_{1}+\cdots+m_{m}}{m_{i}}+1\right)\right)
$$

If Consider the product tree for y_{1}, \cdots, y_{4} constructed in the proof of $5 \ln 5.4$.
*ape For each node (labeled t), compute x mod t, starting - from the root. Note that if the parent node is labeled s, then $\overbrace{t \mid s, \infty}(x \bmod t)=(\underbrace{(x \bmod s)}_{<|s|} \bmod t)$.
6. Matrix operations
bet K be a field and assume $t_{1},-x, x_{1}, \mathbb{Q} \rightarrow K$ can be done inv (1).
6.1. Multiplication

Q Lew quickly can we multiply two $n \times n-$ matrices?
Bumble Friv.alg.: $\theta\left(n^{3}\right)$
She 6.1.1 (Strassen, Gaussian Elimination is not optimal) You can suubtiply $A, B \in M_{n \times n}(K)$ in time $\theta\left(n^{\log _{2} 7}\right)$ (on an $\theta(\log n)-b i t R A M)$.
긴a
w, l.0.g. $n=2^{k}$.
Write $A=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right], B=\left[\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right]$
with $\frac{n}{2} \times \frac{n}{2}$-matrices $A_{i j} B_{i j}$.
total: 8 multi. of $\frac{n}{2} \times \frac{n}{2}$-maticics

$$
\leadsto \text { time } O\left(n^{\log _{2} 8}\right)=\theta\left(n^{3}\right) \text {. }
$$

Actually, 7 multi, are enough! [Simial or to Karatsubal]
and some number
of addition/sulltractions
\Rightarrow sotal time $\times 2^{2 k}+7 \cdot 2^{2(k-1)}+7^{2} \cdot 2^{2(k-2)}+\ldots+7^{k} \times 7^{k}=n^{\log _{2} 7}$.

Rules The exponent w st time $\theta\left(n^{\omega}\right)$ suffices has bean improved many times. Strassen: $w=\log _{2} 7 \approx 2.807$
Current record: $w=2.373$

IH's very unclear if $V_{\varepsilon}\left(n^{2+\varepsilon}\right)$ is possible for all $\varepsilon>0$.
6.2. Determinant, rank, inverse
(Strassen, gaussian Elimination is not O gimel)
The 6.2.1 Assume we can multiply $n \times n$ - matrices in $\theta\left(n^{\omega}\right)$, with $\omega>2$.
Then, given an $n+n$-matrices A, we can compute an
invertible $\times u$ - matrise Band its determinant such that $B A$ is in reduced
insincere $B-1$
row echelon form in time $\theta_{\omega}\left({ }_{n} \omega\right)$ andareand below this are 0 . 4 First power entry in each row is 1 Enoch row has at least os many leading zeros is the previous tow.
Prole Gaussian elimination does this in θ ($n^{2} m$) for an $n \times m$-matrices A (and $n \times n$-matron B).

Cor 6.2.2 We can compute et (A), ok $(A), A^{-1, \text { basesfor } \theta(A)}(A)$ in (A), Af of loo $\operatorname{det}(A)=\operatorname{det}(B)^{-1} \cdot \operatorname{det}(A B)=\operatorname{det}(B)^{-1} \cdot$ rood. of diagonal entries of $A B$ Of oflor $x k(A)=$ number of xifinsero rows in A
$A B$ is expert triangular

If obs $(A)=n$, then $A B=I_{n}$, so $A^{-1}=B$.

$$
\begin{aligned}
& \operatorname{ker}(A)=\operatorname{ser}(B A)=\ldots \\
& \operatorname{in}(A)=B^{-1} \cdot \operatorname{im}(B A)
\end{aligned}
$$

dlgfor She 20.R.0.g $n=2^{k}$.

1) Find $B_{1}=\left[\begin{array}{ll}* & 0 \\ 0 & I\end{array}\right] \quad B_{1} A=\left[\begin{array}{cc}R R E F & * \\ * & *\end{array}\right]$
byrecusively applying the alg. To the top left $\frac{n}{2} \times \frac{n}{2}-$ motrisis
2) Find $B_{2}=\left[\begin{array}{ll}I & 0 \\ * & I\end{array}\right]$ s, $A \cdot \begin{array}{ll}\text { in }_{2} B_{1} A & \text { below any leading } 1\end{array}$ in the top left, there are just 0 s in the bottom left.
3) Find $B_{3}=\left[\begin{array}{cc}I & 0 \\ 0 & *\end{array}\right] \Delta . A \cdot B_{3} B_{2} B_{1} A=\left[\begin{array}{ll}R R E F & * \\ R R E F & *\end{array}\right]$ by recursively applying the alg to the bottom left $\frac{n}{2} \times \frac{n}{2}$-matrix.
4) Find $B_{4}=\left[\begin{array}{cc}I & * \\ 0 & I\end{array}\right] s \times$ in $_{4} \ldots B_{1} A$ above any leading $1 s$ in the bottom lest, there are just os in in the top loft.
5) Apply steps 1-4 to the right half of the matrice, ignoring all rows that have nowsero entries in the left halt.
6) Infly a permutation matrix to ensure that the number of leading $O s$ in each row is non-decreasing as you move downwards.
The resuling wat rise is in RREF.
Total: 4 recursion calls with $\frac{n}{2} \times \frac{n}{2}-$ matrices and a bod. nt. Af milt. of \Rightarrow Sine $y Z^{k \omega}+4 \cdot 2^{(k-1) \omega}+\ldots+4^{k} \underset{\omega}{x} 2^{k \omega}=n^{\omega}$.
6.3. Characteristic polynominal
$2 \operatorname{lnm}^{6.3: 1}($ 2lessenberg, ef. section 2.214 in lolen
we can compute the char.pol. $\mathcal{Z}_{A}(x)=\operatorname{det}\left(X I_{n}-A\right)$ of an $n \times n$ - matris A in $\theta\left(n^{3}\right)$.

 Qf First, find a súmilar matrie $B=$ in Dlessenberg form: $b_{i j}=0 \quad \forall_{i j}$, susuchthot $i \geqslant j+2$
(Lemma 6:3.2)

Then, $\operatorname{det}\left(\mathbb{K}_{A}(x)=\mathbb{Z}_{n}(x)=\operatorname{det}\left(x I_{n}-B\right)\right.$ an be conquted in $\theta\left(n^{3}\right)$ using loplace exparsion. (Lamma 6.3.3)
inzermenberg form which is
Lemma 6.3.2 You can compute a matrix B^{2} simitar to $A \operatorname{in} \theta\left(n^{3}\right)$. $\left.{ }^{\prime \prime} \alpha_{0}\right)_{i, j}$
Alg start with $B=A$. Weill fisentto columns sta, ing from the left.
For, $=1, \ldots, n-1$:
If $b_{i} \neq$ of or some $i \geqslant j+2$:

Let io be the smallest $i \geqslant j+1$, $A \cdot b_{i j} \neq 0$.
Exchange rows $j+1$ and i_{0}
and columns $;+1(-3)$ andine $(-j$.
$\left(\right.$ chen, $b_{j+1, j} \neq 0$.)
For each $i \geqslant j+2$
subtract $v:=\frac{b_{i j}}{b_{j+1, j}}$ times pour $j+1$ from row i and add u tines columba i i (ri)to column $j+1(>j)$. (Then, $b_{i, j}=0$.)

Lemma 6,3,3
(2) Let $B^{\prime \prime}{ }^{(b i)}$ e an $n \times n$-matres in Delsenberg form and let B_{m} be top left $m \times m$ minor for $0 \leq m \leq u$. Write $p_{m}(x)=x_{s_{m}}(x)$.

Then, $p_{m}(x)=\left(x-b_{m m}\right) p_{m-1}(x)-\sum_{i=01}^{m-1} b_{i m}\left(b_{i+1 ;} \cdots b_{m, m-1}\right) \cdot p_{i-1}(x)$.
Burls Since dog $\left(p_{m}\right)=m$, we can compute $p_{01} m p_{n}=\operatorname{in} \theta\left(l_{n}\right.$.
BI Use Laplace expansion on column m. This imodves picking. row.

$$
\left(x-b_{m m}\right)_{p_{m-1}}(x)
$$

Removing tow $1 \leq i<m$ and column in leaves the matrices

which produces the summand

$$
\begin{gathered}
(-1)^{i+m} \cdot\left(-b_{i m}\right)\left(-b_{i+1}\right)-\left(-b_{m, m-1}\right) \cdot p_{i-1}(x) . \\
=-b_{i m} b_{i+1 i} \cdots L_{m, m-1} \cdot p_{i-1}(x) .
\end{gathered}
$$

6.4. Froberius normal form

Let MA le an $n \times n$-matisse over a fula.

Make K^{n} a (left) $K[x]$-module by defining

$$
f \cdot v:=f(M) v \text { for } f \in K[x]
$$

$$
\left(\text { so } 3 \cdot v=3 v, \quad X \cdot v=M v, \quad X^{2} \cdot v=M^{2} v, \ldots\right)
$$

$K[X]$ is a principal ideal domain, so the structure th foreign ovules over P IDs shows that

$$
K^{n} \cong \bigoplus_{i=1}^{r} k[x] /\left(f_{i}\right) \text { for polynosuiab }{ }_{(1, \ldots,}^{0} f_{r} \in K[x]
$$

satisfying $f_{i} \mid f_{i+1}$ for $i=1, \sim, r-1$.
The pol. are unique up to units,
unique if we assume w.l.o.g. that $f_{117} f_{r}$ are manic. These pol are called the invariant factor of M.

Def The companion matrix f of a manic pol. $f(x)=\cos ^{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a$ is the matrise representing mull. by X in the vector spar $K[x] /(f(x))$ w.t.t. the basis $1, x, \ldots, x^{n-1}=$

$$
C_{f}=\left[\begin{array}{ccc}
0 & 0 & -a_{0} \\
1 & 0 & \vdots \\
0 & \ddots & \vdots \\
& & 1
\end{array}-a_{n-1}\right]
$$

Rum the char. and min. pol. of C_{f} are both $f(x)$.

Of The matrices $I_{1} C_{f}, C_{f}^{2}, \ldots, C_{f}^{n-1}$ are linearly independent

$$
\Rightarrow \operatorname{dog}(\min \text { pol. })=n .
$$

But $f\left(c_{f}\right)=0$ because milt. by $f(x)$ in $K(x) /(f)$ is the zero nap.
\Rightarrow min. pol $=f(x)$.
nim, pol. I char. pol $+0_{8}^{4}=n$
\Rightarrow char pol $=f(x)$.

We have shown:
She 6.4.1
Any $n \times n$-watrise M is similar to eseactly one motrie of the form

$$
\left[\begin{array}{ccc}
c_{f_{1}} & & 0 \\
& \ddots & \\
0 & c_{f r}
\end{array}\right] \text { for manic. pol. } f_{1}|\cdots| f_{r} .
$$

This is called the Trobenius/rational normal form of M.
The char. pol. of M is $f_{1}(x)_{1} f_{r}(x)$.
The min. pol of M is $f_{r}(x)$.
Bunk Two matrices are similar iffy they have the same Fr.n.f. err 6.4.2 If two matrices are similar over a field $L \geqslant K$, they dee similar over K.

Sham 6.4.3 (Etorjoharn, an $\left(A_{n}{ }^{3}\right)$ Algorithm for the Eroberins Normal Form)
7. She CRT trick
7.1 Determinants

Let M be an $n \times n$-matrix with integer entries.
Q Compute $\operatorname{det}(M)$.
Omb Gaussian elimination doesn't work well because the intermediate results can le rational numbers with many digit (nr, of digits could grow exponentially in n).
Idea Compute (let (M) mod $)^{\epsilon^{\pi r}}$ for sufficiently many primes p to be able to reconstruct dec (M) using the Chinese remainder theorem.

Lemma 7.1.1 For large N,
$\log \prod_{p \leq N} p$ rime : $G \log p, ~$ and $\#\left\{p \leq N 3 \times \frac{N}{\log N}\right.$. $p \leq N_{\text {r rime }}=\sum_{p \neq N} \log p$
Pf This is in immediate consequence of the prime number theorem.

$$
|\operatorname{det}(M)| \leq \prod_{i=1}^{n} \sqrt{\sum_{j=1}^{n} m_{i j}^{2}}=: B(M)
$$

Of $|\operatorname{det}(M)|$ is the volume of the parallelepiped spanned by the pow s of M.

Jim 7.1 .3 (A. For any $M e \mu_{n \times n}(Z)$, we can compute
Pence:
$\operatorname{det}(M)$ in time $\theta\left(\left(n^{2} \log B(M)\right) \cdot\left(n^{\omega}+(\log \log B(M))^{2}\right)\right)$ on an $\theta(\log n+\log \log B(\mu))-\operatorname{bit} R A M$.

P\& First, compute $B^{\prime}(M):=\prod_{i}\left\lceil\sqrt{\varepsilon_{j} m_{i j}^{2}}\right\rceil \leq 2^{n} B(M)$.

$$
B^{V \prime}(M)
$$

Then, find some $N+\log B)$ A. A MP

$$
\begin{aligned}
& \text { " } 1 \text { pos } \theta(\log \log B(M) \text { digits } \\
& \text { and thor are } \theta(\log B(M)) \\
& \text { such primes } P
\end{aligned}
$$

finally, fret ry integer $x \in\left[-B^{\prime}(M), B^{\prime}(M)\right]$ such that $x \equiv \operatorname{det}(M \bmod p) \bmod p \forall p \leq N$ rainier to Problem 4 on beet 3 .
$N=1,2,4,8, \ldots$, compute all primes $p \leq N$ using the sieve of Erathathers in thine $O(N \log \log N)$, until you find an N that wools.

Bunk You can also compute the deternsinant without reducing modulo primes using the Bareiss algorithon (Alg, 2,2,6 in lohen)
7.2. Rank

Ounce The rank of M is the largest $\theta \leq r \leq n s, t$. some $r \times r$-minor of M (made from r not xelessarily corsecitice rows and columns) has norser determinant.

Cor $7.2 .1 \quad$ obs $(M) \geqslant \operatorname{ls}\left(M_{\bmod p}\right) \quad \forall$ primes p
with equally if p does (t divide the (nowero) jet of artier ar p of M, where $r=\operatorname{rlc}(M)$
$\operatorname{eor} 7.2 .2$

$$
\begin{aligned}
& \operatorname{rk}(M)=\operatorname{mase}_{p \leq N} \operatorname{rk}(M \bmod p) \text { if } \prod_{p \leq N} p
\end{aligned}
$$

which can be computed in tine

$$
\theta((n+\log \pi(M)) \cdot \underline{Z} \omega) \ldots
$$

Omb If $\prod_{i \leq N} p S^{\prime}(M)$ and $N^{\prime} \geqslant N$, then the probability that a random prime $\rho \leq N^{\prime}$ doesn'A satisfy.

$$
r k(M)=r k(M \bmod p)
$$

is at most $\frac{\#\{p<N\}}{\#\left\{p \leq N^{\prime}\right\}}$.
This gives rise to a Monte-larlo alg. with

7.3. Resultants

Pul lot $f, g \in \mathbb{Z}[x]$ be mores poe. If $f, g \bmod p$ are relatively prime in $\left[F_{p}[x]\right.$, then f_{1} are rel prime in $Q[x]$. The converse does it hoed:

Erg, $x^{2}+1, x+1$ are rel, prime in $Q[x], \operatorname{loct} x^{2}+1=(x+1)^{2} \operatorname{modi}$
Q If f, g are opel prime over Q, for which p are they not rel. prime mod p ?
Def Fe f For any $1 \geq 0$, $\operatorname{lot} K[x]_{2 d}:=\{\in K(x]: \operatorname{deg}(f)<d\}$.
Lemma 7.3.1 Let $f, g \in K[x]$ be pe l of degrees n, m. Then, $\operatorname{ged}(f, g)=1$ if and orly if
 (a b) $\mapsto f a+g b$
is an isomorphism.
Pf Note th ot $\operatorname{dim}(L H S)=m+n=\operatorname{dim}(R H S)$.

" 1 " $\operatorname{zed}(f, g)=e$ in only contains multiples of ged $\left(f_{1}\right) . \Rightarrow$ The map in $1 A$ surjective.
$" \rightarrow "$ The wrap is av som. according to cécout's identity.

Def The resultant pres of $\left(f_{1}\right)$ pol, $\left.f, g \in K C X\right\rangle$ of deg .usm is the determinant of the mop in lemma 7.3 .1 w.rit the basis $\left((1,0),(x, 0), \ldots,\left(x^{m-1}, 0\right),(0,1), \ldots, 10, x^{n-1}\right)$) of the LHS an the basis $\left(1, x, \cdots, x^{n+m-1}\right)$ of the RHS.
$\operatorname{Cor} 7,3.2 \operatorname{gcd}(f, g)=1 \Leftrightarrow \operatorname{Gres}(f(g) \neq 0$.
Cor 7,3.3 Let $f, g \in Q[x]$ be pol. and let p be a prime not dividing the denominator of any coif. of f arg. Then, f, g are rel. prime mod eff $\rho+\operatorname{Res}(f, g)$.

Remand 7.3.03
a) $\operatorname{Res}(g, f)=(-1)^{n m} \operatorname{Res}(f, g)$

$$
\text { a) } \operatorname{Res}\left(\operatorname{Res}(f, g)=a_{n}^{m} b_{m}^{n} \cdot \prod_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}}\left(\alpha_{i}-\beta_{j}\right)=\prod_{1 \leq j \leq n}^{m} g\left(a^{\alpha i}\right)\right.
$$

if $\alpha_{1}, \ldots, \alpha_{n} \in \bar{K}_{\text {are }}$ the roots off (with mult.)
and $\beta_{11}, \beta_{m} \in \bar{k}-4-4-$
b) $\operatorname{Res}(r f, s g)=r^{m} s^{n} \operatorname{Res}(f, g) \quad \forall r, s \in K^{x}$
off a, b clear
c) W.l.o.g. f and g are monic: $a_{n}=b_{m}=1$.

$$
\Rightarrow f(x)=\prod_{i}\left(x-\alpha_{i}\right), \quad g(x)=\prod_{i}\left(x-\beta_{j}\right)
$$

\Rightarrow loeff. a_{k} of f is how. pol. in $\alpha_{1}, \cdots, \alpha_{n}$ of deg $n-k$.

$$
\ldots b_{c} \text { of } 9 \ldots \beta_{1} \cdots, \beta_{m} \ldots m-c \text {. }
$$

\Rightarrow Res $\left(f_{1} g\right)$ is how. pol. in $\alpha_{1, \ldots, \alpha_{n}}, \beta_{11} \ldots, \beta_{m}$ of deg. n nm. Expand the determinant

$$
=I f\left(\alpha_{i}\right)_{i} \in \bar{K}^{\prime \prime},\left(\beta_{j}\right)_{j} \in \bar{K}^{m}
$$

 $\Rightarrow \operatorname{Res}(f, g)=C_{n, m} \cdot \prod_{i, j}\left(\alpha_{i}-\beta_{j}\right)$ for some constant $C_{n,}$

So show $C_{n, m}=1$, it suffices to check the equality for one pair (f, g) of pol. f, g of dg. n, m For eseample, look at $f(x)=x^{n}, g(x)=x^{m}+1$

$$
\alpha_{1}=-\alpha_{n}=0, \beta_{1}
$$

$$
\begin{aligned}
& \alpha_{1}=\cdots=\alpha_{n}=0 \\
& \Rightarrow \prod_{i, j}\left(\alpha_{i}-\beta_{j}\right)=(\underbrace{\left.\prod_{j}\left(-\beta_{j}\right)\right)^{n}}_{\substack{\text { consticosfe. } \\
\text { of } g}}=1 .
\end{aligned}
$$

Truk Resultants can be computed using the (tat) Eudidan olgorithon, (HW)
looter fields K
with $v(1)$
arithunatic

* She CRT trick then allows us to compute resultants of polynomials in $[C X]$, in part. to determine whether two pol. in $Q[x]$ are relatively prime.

Wef The discruminant of fek $(x)=a_{n} x^{n}+\ldots+a_{0} \in K[x]$

$$
\operatorname{dise}(f)=\frac{(-1)^{n(n-1) / 2} \arg \left(f_{1} e^{\prime}\right)}{a_{n}}
$$

Ee dise (ax $a+b x+c)=b^{2}-4 a c$
Lemma 7.3.4

$$
\operatorname{dise}(f)=a_{n}^{2 n-2} \prod_{1 \leq i<j S_{n}}\left(\alpha_{i}-\alpha_{j}\right)^{2}
$$

if $\alpha_{n 1 \rightarrow 7} \alpha_{n} \in \bar{k}$ are the roots of f (woth mult.)
P8

$$
\begin{aligned}
& \operatorname{deg}(f)=n, \quad \operatorname{deg}\left(f^{\prime}\right]=n-1 \quad f(x)=a_{n} \cdot \prod_{j}\left(x-\alpha_{j}\right) \\
& \Rightarrow \operatorname{Aes}\left(f_{1} f^{\prime}\right)={ }^{(-1)^{(n-1)} a_{n}^{n-2}} . \prod_{i=1}^{n} f^{\prime}\left(\alpha_{T}\right) \\
& \operatorname{lommax}_{73.3} \\
& =6(-1)^{n(n-1) / 2} a_{n}^{2 n-2} \cdot \prod_{i} \prod_{j \neq i}\left(\alpha_{i}-\alpha_{j}\right) \\
& =a_{n}^{2 n-2} \cdot \prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right) .
\end{aligned}
$$

7.) Efentest conAtion divisor)
7.4. Bounds on polynomial factors

Th m7.4.1
Let $f(x)=a_{n} x^{n}+\ldots+a_{0} \in \mathbb{C}(x)$,
$g(x)=b_{m} x^{m}+\ldots+b_{0} \in \mathbb{C}[x]$ be pol.
with $g \mid f$. Shan,

$$
\left\lvert\, \begin{gathered}
b_{i} \\
b_{m}
\end{gathered} \leq\binom{ m}{i} \cdot\left(\sum_{j=0}^{n}\left|\frac{a_{j}}{b_{n}}\right|^{2}\right)^{1 / 2} \quad\right. \text { for } i=0, \ldots, m \text {. }
$$

Bunch Cheese are better bounds; see for ceampla She 3.5 .1 in Cohen.
Cor 7.4 .2 If $f \in \mathbb{Z}[x]$ indivisiblaby $g \in \mathbb{C}(x)$ in the ring $e(x)$
then $\left|b_{i}\right| \leq \underbrace{\binom{m 0}{i}} \cdot\left(\sum_{j=0}^{\left(\sum_{j=2}^{n}\left|a_{j}\right|^{2}\right)^{1 / 2}}\right.$ (ma ran $\left.a_{j}\right)$ for $i=0, \ldots, m$.
Bf of Cor

$$
\underset{\Rightarrow(f i \operatorname{Prx})}{\Rightarrow b_{m}\left|a_{n} \Rightarrow\right| b_{m}\left|\leq\left|a_{n}\right| .\right.}
$$

The she follows from:
Lemma 7.4 .3 (Landau's inequality) Let $r_{11}, \ldots, r_{n} \in \mathbb{C}$ be the roots of $f(x)=a_{n} x^{n}+\ldots+a_{0} \in \mathbb{C}[x]$. Then,

$$
\prod_{\substack{1 \leq i \leq n: \\ i}}\left|r_{i}\right| \leq\left(\sum_{j}\left|\frac{a_{j}}{a_{n}}\right|^{2}\right)^{1 / 2}
$$

$$
r i \mid \geq 1
$$

7.5. Led of integer polynomials

Shim 7.5.1 Let $0 \neq f, g \in \mathbb{Q}(X)$ be polynomials of degree $\leq n$ whose colficiento C satisfy $|d| S B$. We can compute $g d(f, g)=\mathbb{Z}$: in average time $\widetilde{\theta}(n(n+\log B))$ on a randomized $\theta(\log (n+\log B))-\operatorname{bit} R A M$.
Pere, $\tilde{\theta}(x)$ means $V\left(x(\log x)^{k}\right)$ for some fixed $k \geqslant 0$.
Once There's a subtle difference between ged in $Q[x]$ and in $\mathbb{Z} ;$ The ged in $Q[x]$ is only defined up to mull. by elements of Q^{x} but the ged in $\mathbb{C}[x]$ is defined up to mult, by el of $\mathbb{C}^{x}=$? For eseample, ged $\mathbb{T}[x]\left(2 x, 6 x^{3}\right)=2 x$.
But the correct multiple is easy to determine, so it suffices to find ged (f, g) up to nubs by a scalar.
Onule set $\tilde{h}=\operatorname{gad}_{Q[x]}(f, g) \in \mathbb{Z}[x]$ be primitive (relatively prime coefficients). Then, $\tilde{h} \mid f, 9$ by loup's lemma, so in part. $\operatorname{lc}(\tilde{h}) \mid \operatorname{lc}(f)$, $\operatorname{lc}(g)$. Let $t=\operatorname{ged}(\operatorname{lc}(f)$, le $(g))$. We' le explain how to compute the ged $h(x)=\frac{t}{l_{c}(\tilde{h})} \cdot \tilde{h}(x) \in \mathbb{Z}(x)$ of f, g (over $\mathbb{Q}[x]$) that has leading coefficient lc $(h)=t$...

Let $k=O l$ large enough sosteat

Pf of $\operatorname{Ilm} 7.5 .1$
rind
紋 $K=V(n+\log B)$ large enough so that

$$
\prod_{\substack{p \leq l \\ p+t}} p>\underbrace{2^{n} \cdot \sqrt{n+1} \cdot B}_{\substack{\text { upper bd. }}} . \quad \text { (Note that } \pi_{p} \pi_{t} \leq|t| \leq B \text {.) }
$$

Find $L=O$ (W (lo gan) large enough so that

$$
\prod_{\substack{k<p \leq L \\ p \nless t}} p>\underbrace{\left(z_{n}\right)!\cdot B^{2 n}}_{\substack{u_{p p} \\ \text { for }\left|s_{d}\left(f_{i}\right)\right|}} .
$$

Find $M=\theta(u \log (u B))$ large enough so that

$$
\# \varepsilon K<p \leq M, p+t\}>2 \cdot \#\{K<p \leq L, p \nmid t\} .
$$

. Mich different quines P_{1} JP $\leq M$
$\operatorname{det} A=\#\left\{p \leq k_{1} p+t\right\}=\sigma\left(\frac{n+g_{R} P}{\operatorname{cog}(n+\cos (B)}\right)$.
Buck a random prime $p_{0} \subseteq M, p_{0} \nmid t$ and

* compute $d^{\prime}:=\operatorname{deg}\left(\operatorname{ged}\left(f \bmod p_{0}, g \bmod p_{0}\right)\right)$.
(isth prob. $\geqslant \frac{1}{2}$, we have $d^{\prime}=d$. . shays $d^{\prime} \geqslant d$.)

Compute $\operatorname{gcd}(f \bmod p, \operatorname{gnod} p)$ for random $p \subseteq M, p+t$ unset you found $p_{1},-, P_{A} \subseteq M$ such that
$\operatorname{deg}\left(\operatorname{gcd}\left(f \bmod p_{i}, g \bmod p_{i}\right)\right)=d^{\prime} \quad$ for $i=1, \ldots, A$.
The resected n. of primes to try is $\mathcal{(A)}$.
Lot $h_{i}=\operatorname{gcd}(\ldots)$ where w.l.o.g. $\operatorname{lc}\left(h_{i}\right) \equiv t \bmod p_{i}$.
Note that $p_{1} \cdots p_{A} \geq \prod_{\substack{p \leq n \\ p+t}} p>2^{n} \cdot \sqrt{n+1} \cdot B$, so there
is at most one pol. T^{\prime} with coff. $\leq 2^{n} \cdot \sqrt{n+1} \cdot B$ s.A.

$$
\tilde{h}^{\prime} \equiv h_{i} \bmod _{p_{i}} \text { for } i=1,--, A
$$

If there is one and it divides f and g, then it must be the ged of f and gin
Otherwise (with prob. $\leq \frac{1}{2}$), start over.!

Punk There's anotherifficienc. "that avoids reduction modulo primes The subresultant algorithm ($N f$. section 3.3 in lohen).
It's basically the Euclidean alg., but ovoids exponential growth of coefficients by dividing by an appropriate (easy to compute) integer (dividing all cooffo) at each stop!

Omb le You can use similar alg. as in sham 75.1 for example to compute the ged of polynomials $f_{1} g \in \mathbb{F}_{q}[T][X]$. The reuming time is

The reason is again that the triangle ing. in $\mathbb{F}_{a}(T)$ is stronger than in \mathbb{R}. (Instead of eor.7.4.2, you have the obvious fact that the degree of any coff. of ged (f, g) is also at most D)

\$ssume we an do arithmate in \mathbb{F}_{q} in time $\theta(1)$.
and select Rn element of \mathbb{F}_{q} uniformeg at raudom
$\underbrace{}_{\text {distind }}$
Thm 81.1 .1 We can determine the number of roots of a pol. $f \in \mathbb{F}_{q}[x]$ of degree n in \mathbb{F}_{q} in time $\tilde{\theta}\left(n \log _{q}\right)$

BI

$$
\begin{aligned}
& \prod_{t \in \mathbb{F}_{g}}(x-t)=x^{q}-x \\
& \Rightarrow \prod_{\substack{t \in \mathbb{F}_{9} \\
f(t)=0}}(x-t)=\operatorname{gcd}\left(f, x^{9}\right. \\
& \left.\Rightarrow \#\left\{t \in \mathbb{F}_{q}: f(t)=0\right\}=\operatorname{deg}(\operatorname{ged}(-))\right)
\end{aligned}
$$

$$
\Rightarrow \prod_{\substack{t \in \mathbb{F}_{q}:}}(x-t)=\operatorname{gcd}\left(f, x^{\alpha}-x\right)=\operatorname{gcd}(f, \underbrace{\left.x^{\alpha}-x \bmod f\right)}_{\text {compute } x^{a} \text { mod }}
$$

$$
\begin{aligned}
& \text { computex }{ }^{a} \text { modf } \\
& \text { using fast espone }
\end{aligned}
$$

$$
\begin{aligned}
& \text { compute } \text { mod }_{\text {ming }}^{\text {ust esporatitit }}
\end{aligned}
$$

$$
\widetilde{\sigma}(n \log q)
$$

Joke $f \in \mathbb{Z}(x) . \Rightarrow \#\{\in \in \mathbb{R}: f(t)=0\}=\operatorname{dog}(\operatorname{ged}(f, g))$, where $g(x)=\sin (\pi x)$.

Luna 8\& 2 Let $f \in \mathbb{F}_{q}[x]$ be a pol. of degree n in $F_{q}\left(i_{1} Q\right.$. dividing $\left.x^{4}-x\right)$.
We can find a random splitting $f=g h$ into poe. $g, h \in F_{q}[x]$ in time $\theta(n \log q)$ [on an $\theta(n)$-bit $R A M]$, where the probability that dog $(g)=k$ is given by a binomial distribution:

$$
\begin{aligned}
& \mathbb{P}(\operatorname{deg}(g)=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad \text { for } k=0, \cdots, n, \\
& \text { where } p=\frac{\left\lceil\frac{1}{2} \pi\right\rceil}{q}\left(\approx \frac{1}{2}\right) .
\end{aligned}
$$

[\& generally $\operatorname{deg}(g) \approx \frac{n}{2}$.]
[uelec use:]

$$
u_{q}(x)= \begin{cases}x^{\frac{q+1}{2}}-x, & q \text { odd } \\ \sum_{i=0} x^{2^{i}} & q=2^{-}\end{cases}
$$

C\& If q is odd, the roots of $v_{q}(x)$ are the squares in F_{q}.

[We le l use the following special case:]
Lama 8.3 use have $x^{q}-x=v_{q}(x) v_{q}(x)$, where

$$
\begin{aligned}
& u_{q}(x)= \begin{cases}x^{q+1} 2 x, & q \text { odd } \\
\sum_{i=0}^{r} x^{i}, & q=2^{r}\end{cases} \\
& v_{q}(x)= \begin{cases}x^{q-1} 2 \\
v_{q}(x)+1, & q \text { odd }\end{cases}
\end{aligned}
$$

Pule $\operatorname{deg}\left(v_{q}\right)=\left\lceil\frac{q}{2}\right\rceil$, po v_{q} has $\left\lceil\frac{q}{2}\right\rceil$ distinct roots in F_{q} and v_{q} has $\left\lfloor\frac{q}{2}\right\rfloor \mathrm{c}^{4}$-.

Bunk If q is odd, the roots of u_{q} are exactly the squares in F_{q}.

Of of soma 8 1,2 Let $r_{1}, \ldots, r_{n} \in \mathbb{F}_{\text {a }}$ be the roots of f.
lominder the (Giver) vandermande map

$$
\begin{aligned}
\mathbb{F}_{q}^{n} & \longrightarrow \mathbb{F}_{q}^{n} \\
\alpha=\left(a_{0},-, a_{n-1}\right) & \longrightarrow \underbrace{\left(a_{0}+a_{1} r_{1}+\cdots+a_{n+1} r_{i}^{n-1}\right)_{=1}^{n}, \cdots, n}_{\varphi_{a}\left(r_{i}\right)}
\end{aligned}
$$

It I^{\prime} an isomanghisinn because r_{1}, \ldots, r_{n} are distinct.
Picks $\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbb{F}_{q}^{n}$ uniformly at random.
$\Rightarrow\left(s_{i}\right)_{i=1, m}=\left(\varphi_{a}\left(r_{i}\right)\right)_{i=1, \cdots, n}$ is a uniformly random el. of \mathbb{F}_{Q}^{u}.
Compute

$$
g(x): \text { aged }\left(f(x), v_{q}\left(\varphi_{a}(x)\right)\right)=\prod_{\substack{1 s i s n: \\ v_{q}\left(x_{s_{i}}\right)=0}}\left(x-r_{i}\right)
$$

 modulo $f(x)$ in $\vartheta(n \log q)!)$
The probability that $\operatorname{deg}(g)=k$ is the probability that eseactly k coordinates oof a random elements of $\mathbb{F}_{q}{ }^{n}$ are roots of $u_{q}(x)$, which is $\binom{n}{u} p^{k}(1-p)^{n-k}$.

Thin S4. 4 we can find all root of a pol. $f(x) \in \mathbb{F}_{q}[x]$ of degree n in average time $\tilde{\theta}(n \log q)$ using randomirates
Auk It's unknown whether there's a deterministic obs, that does this in polynomial time (in $n, \log q$).
es

$$
\text { w.l.o.9. } f(x) \mid x^{q}-x \quad \text { (replace } f \text { by } \operatorname{ged}\left(f, x^{q}-x\right) \text {). }
$$

Use Lemma 8 . 2 to find a splitting $f=g h$ and recursively apply the alg. To g and h.

Were have $\mathbb{E}(\operatorname{deg}(g))=n p$ and

$$
\begin{aligned}
& \mathbb{P}\left((\operatorname{dog}(g)-\mathbb{E}(\operatorname{dog}(g)))^{2} \geqslant \Delta\right) \leqslant \frac{\operatorname{var}(\operatorname{dog}(g))}{\Delta}=\frac{n p(1-p)}{\Delta}, \\
& \text { where } p=\frac{\left\lceil\frac{1}{q}\right\rceil}{q} \cdot \in\left[\frac{1}{2}, \frac{2}{3}\right] . \\
& \Rightarrow \mathbb{P}\left(\operatorname{deg}(g) \in\left[\frac{1}{4} n, \frac{3}{4} n\right)\right) \geqslant \frac{1}{2}
\end{aligned}
$$

for sufficiently large n.
This shows that the average running time is $\tilde{O}(u \log q) \quad$ with one more factor of $\log u$ than in seumrd8.1.2.)
9. Squarefree factorisation

Let K be a perfect field and assume we can do arithmetic in K in $V(1)$. (for $K=F_{q}$, realistically $\bar{\theta}(\log q))$ If char $(k)=p>0$, assume we can compute the p-th roof of $x \in K$ in $\theta(1)$. (for $K=F_{q}$ realistically using the formula $\sigma\left(\log _{2} q \cdot \log , \frac{y}{}\right)$
$x^{1 / p}=x^{9 / P}$ and fort exponentiation)
 a p-th power, and if so determine its p-th rod, in $\mathcal{O}(n)$.
Thu 9. 1 Let $f(x) \in K[x]$ be a manic pol. of degree n. We can compute all, polynomials

$$
s_{k}(x)=\prod_{t \in \operatorname{mos} \rightarrow \operatorname{mic} \text { iron. }} t(x) \quad \text { for } k=1, \ldots, n
$$

$$
\begin{aligned}
& v(f)=k \\
& \begin{array}{l}
\text { nr, eff times } \\
t(x) \text { divides } f(x)
\end{array} \\
& f(x)=\bar{\prime}
\end{aligned}
$$

(so that $f(x)=\prod_{k=1}^{n} s_{k}^{n}(x)^{k}$ with aquarefree $s_{k}(x)$)
intine $\hat{\theta}(n)^{k=1}$.
[All adds are assumapl to be manic!]
Comesteg $g=\operatorname{ged}\left(f, f^{\prime}\right), b_{0}=\frac{f}{9}$, to $\frac{f^{+}}{9}$.
For $k=1, \ldots, \omega_{n}^{n}$, econ quite

$$
a_{k}=\operatorname{ged}\left(b_{k-1}(c \cdot 0), \quad b_{k c}=\frac{b_{k-1}}{a_{k}}, c{ }_{k=1}=\frac{c_{k-1}}{a_{u}}-b_{u}{ }^{\prime}\right.
$$

Shan, $r O_{k}=a_{u}$ for all tu s
[This follows from:]
Lemma 9,2
Let char $(k)=p(\geqslant 0)$. We can compute all pol.

$$
\begin{aligned}
& a_{u}(x)=\prod_{t} t(x) \\
& v_{t}(f) \equiv k_{\bmod p} \\
& \text { for } 10 \leq \leq
\end{aligned}
$$

in time $\mathscr{\theta}(n)$.

Of of $2 \ln 9.1$ (using hemma9:2)
lear if $p=0$, 20 assume $2 \leqslant p \leqslant n$.
or $p>n$
$h(x)=\frac{f(x)}{\prod_{0^{1 \leq k \leq-0}} a_{k}(x)^{k}}$ is a p-th power.
Gecursindly apply the alg (from tho shim.) to to $\sqrt[t o l]{\ln (x)}$. of degree $\leq \frac{u}{p}$.

$$
\begin{aligned}
& \leadsto \omega_{6}(x)=\prod_{t:} \quad t(x) \quad \text { for }=1, \ldots,\left\lfloor\frac{n}{p}\right\rfloor . \\
& \underbrace{v}_{\Leftrightarrow v_{t}(n d)}=l_{p} \\
& \Rightarrow S_{k+c_{p}}=\operatorname{ged}\left(a_{k}, \sigma_{c}\right) \text { for } 1 \leq k \leq p-1,1 \leq c \leq\left\lfloor\frac{u}{p}\right\rfloor \text {. } \\
& s_{k}=\frac{a_{u}}{\prod_{c \geq 9} s_{u+c p}} \quad \text { for } 1 \leq k \leq p-1 \\
& s_{l p}=\frac{\sigma_{l}}{\pi s_{u+C p}} \quad \text { for } 1 \leq l \leq\left\lfloor\frac{n}{p}\right\rfloor \text {. }
\end{aligned}
$$

Aly for Lomma 9.2
(All geds are ossumed to be nonice)
compute $g=\operatorname{ged}\left(f, f^{\prime}\right), b_{0}=\frac{f}{g}, c_{0}=\frac{f^{\prime}}{g}, b_{0}^{\prime}$
For $k=1, \ldots, N$ ($1 / 2$
eompute $a_{k}=\operatorname{ged}\left(b_{k-1}, c_{k-1}\right), b_{k}=\frac{b_{k-1}}{a_{k}}, c_{k}=\frac{c_{k-1}}{a_{k}}-b_{u}^{\prime}$

Claim (eroectress)

$$
\begin{array}{ll}
a_{u}=\prod_{t:} t(x) & \text { for } k=u_{1}, \ldots, N \\
b_{u}=\prod_{t: c} t(x) \bmod _{p} & \text { for } k=0, \ldots, N
\end{array}
$$

$v_{t}(f) \neq 0, \ldots k \bmod p$

$$
v_{t}(f) \neq 0_{1, \ldots}^{k \bmod p}
$$

of (by ind over)
$k=0$:

$$
\begin{aligned}
& f(x)=\prod_{t} t(x)^{v_{t}(t)} \\
& \Rightarrow f^{\prime}(x)=\sum_{t_{i}} v_{t}(t) \cdot \frac{t^{\prime}(x)}{t^{\prime}(x)} \cdot f(x)
\end{aligned}
$$

because $t^{\prime} \neq 0$
Otherwise: If $v_{t}(f)=0 \bmod p$, then $v_{t}\left(f^{\prime}\right)=v_{t}(t)-1 \Rightarrow v_{t}(g)=v_{t}(t)-1$.
$\left(20 v_{t}(f) \neq \operatorname{in} k\right)$
If $v_{t}(f) \equiv 0 \bmod p$, then $v_{t}\left(f^{\prime}\right) \geqslant v_{t}(f), \Rightarrow v_{t}(g)=v_{t}(t)$.
$(\operatorname{sov}(f)=0 \operatorname{in} k)$

$$
\begin{aligned}
& \Rightarrow g(x)=\prod_{\substack{t: \\
v_{t}(f) \pm 0}} t(x) v_{t}(f)-1
\end{aligned} \prod_{\substack{t: \\
v_{t}(f)=0}} t(x)_{t}^{v_{t}(t)}
$$

$k-1 \rightarrow k:$

$$
\begin{aligned}
& \text { Let } t \mid b_{u-1} \\
& \text { Ther, } v_{t}\left(c_{k-1}\right)= \begin{cases}10, & v_{t}(f) \equiv k \\
0, & v_{t}(f) \equiv k \bmod p\end{cases}
\end{aligned}
$$

$\Rightarrow a_{k}$ is as doimed.

$$
\begin{aligned}
& \rightarrow b_{w} \\
& b_{u}^{\prime}(x)=\sum_{\substack{t: \\
v_{t}(t) \neq a_{0}, k, k}} \frac{t^{\prime}(x)}{t(x)} \cdot b_{u}(x) .
\end{aligned}
$$

$\Rightarrow c_{k}$ is as elained.

$$
\begin{aligned}
& \text { Clain: Theals has rumming time } \theta(u) \text {. } \\
& \text { deg }\left(a_{n}\right) \leq \operatorname{deg}\left(b_{u-n}\right) \\
& \begin{array}{l}
\operatorname{deg}\left(a_{u}\right)+\sum_{\operatorname{dog}\left(b_{u}\right)}+ \\
\left.+\varepsilon \operatorname{dog}\left(c_{u}\right)\right) .
\end{array} \\
& \operatorname{deg}\left(c_{u}\right) \leq \operatorname{deg}\left(b_{u}\right) \\
& \sum_{w} \operatorname{deg}\left(b_{u}\right) \leq \sum_{t} v_{t}(f) \cdot \operatorname{deg}(t) \\
& =\operatorname{deg}\left(\Pi t(x)^{v_{t}^{(t)}}\right) \\
& =\operatorname{deg}(f)=n .
\end{aligned}
$$

zocrey
10. Factoring over finite field

You've seen owe method (Berlekanp-zassenhaus) on problem set :s (Eaqutidianning time $\left.\hat{\theta}\left(n^{\omega}+n \log q\right)\right)$
There are faster aborithms that work more like the rootfinding alg. in section 8:
10.1. Distinct -degree factorisation

Lemma 10.1.1

$$
x^{q^{k}}-x=\prod_{\substack{t \in \mathbb{F}_{q}(x) \\ \text { voicing } \operatorname{ing} \\ \operatorname{dog}(t) \mid k}} t(x)
$$

Of If t is ir red. of degree $d \mid k$, then its splitting field is $F_{q} \leq F_{G}$
\Rightarrow Each root ry s of t satisfies $\mu^{n^{k}}=$ or

$$
\Rightarrow \text { RHS } 1 \text { LHS. }
$$

On the other hand, each root ar of $x^{q^{k}}-X$ lies in $\mathbb{F}_{q} k$.

$$
W_{000}, \mathbb{F}_{q} \subseteq \mathbb{F}_{q}(\boldsymbol{m}) \subseteq \mathbb{F}_{q^{k}}
$$

$\mathbb{F}_{q}\left(\bar{k}_{\mathbf{q}}\right)=\mathbb{F}_{q} d$ for some $d(k$. The min. pol, of or has degrees

$$
\begin{equation*}
\Rightarrow L H S \text { | RHS } . \tag{0}
\end{equation*}
$$

$\operatorname{lor} 10.1 .2$ Let $f \in \mathbb{F}_{q}(x)$ be a pol of degree n and assume we are given the n polynomials $x^{q^{k}} \bmod f$ for $k=1, \ldots, n$. Then, we can compute the derek parts

$$
g_{k}(x)=\prod_{c} t(x) \text { of } f(x) \text { for } k=1, \ldots, n
$$

$$
\operatorname{deg}(t)=k
$$

in time $\theta\left(n^{-1 / 2}\right)$.
Once If f is squarefree, then $f(x)=g_{n}(x)-g_{n}(x)$.
Alg Let h_{0}, $=f$. w, li: 9 . f is squarefree loftor using Flem 9.1 and replacing $f(x)$ by $s_{1}(x) \cdots s_{n}(x)$.)

$$
\text { Fork =1, } k, n:
$$

Compute $g_{k}=\operatorname{ged}\left(h_{k-1}, x^{q^{k}}-x\right)$
and $\quad h_{k}=\frac{h_{k-1}}{g_{k}}$.
$\bmod t)$
Q Dow to compute ak i E^{q}. for $k=1 \ldots, n$?

Bulls $\alpha_{k}(x)=\alpha_{k-1}^{(x)}$, so using fast eseponentiation, we can compute α_{k} from α_{k-1} in $\theta(n \log q)$.
\Rightarrow Iotal time $\tilde{\sigma}\left(n^{2} \log q\right)$.
We can do faster!

Prob $\alpha_{u+c}(x) \equiv x^{a+c} \equiv\left(x^{q^{k}}\right)^{q^{c}} \equiv \alpha_{c}\left(\alpha_{k}(x)\right) \bmod f(x)$.
Warning In general, if $\alpha(x) \equiv \beta(x) \bmod f(x)$, then $\alpha(\gamma(x)) \equiv \beta(y(x)) \bmod f(f$ not $\bmod f(x)$
Of of Bumble $\alpha_{l}(x) \equiv x_{c}^{q C} \bmod f(x)$

$$
\begin{aligned}
& \Rightarrow \alpha_{c}\left(\alpha_{k}(x)\right) \equiv \alpha_{k}(x)^{q^{c}} \bmod f\left(\alpha_{k}(x)\right) . \\
& \text { finer } f\left(\alpha_{k}(x)\right) \equiv f\left(x^{q^{k}}\right) \equiv f(x)^{q^{k}} \equiv 0 \bmod f(x) \text {, } \\
& \alpha_{k}(x) \equiv x^{q^{k}} \text { made }(x)
\end{aligned}
$$

this implies

$$
\alpha_{c}\left(\alpha_{u}(x)\right) \equiv \alpha_{u}(x)^{q^{c}} \equiv\left(x^{q^{k}}\right)^{q c} \equiv x^{q^{k+c} \equiv \alpha_{k+c}(x) \bmod f(x), ~ x, ~}
$$

Of $\alpha_{c}(x)=x^{k} z^{2} g_{c}(x)-x^{q^{2}}=f(x) g_{c}(x)$ for

Modular composition problem
 compete $\alpha(\beta(x)) \bmod f$.
of degree $<n$,
(Note that it's in general not enough to how $\alpha^{(1)} \bmod f(x)!$)

It an m be done faster,
Estilbondyt won's explain a better alg. fork modular composition. Instead, we 'l el Evaluating a pal, of degree n at n point is not much harder -than evaluating it at a single point (1):
Lemma 10.1 .3 Assume we can do arithmetic in R in $\theta(1)$ Let $f \in R[x]$ be a pol. of degrees and let $c_{1}, \ldots, c_{n} \in R$. we can corupute $f\left(c_{1}\right), \ldots, f\left(c_{n}\right)$ in $\widetilde{\mathcal{V}}(n)$.
Bf $f\left(c_{i}\right)=f(x) \bmod x-c_{i}$.
Using the modulo tree ("shim $5,5^{4}$), we can compute $f \bmod x-c_{n}, \ldots, f \bmod x-c_{n}$ in $\hat{\theta}(n)$.

Cor 10.1.4 Let $f \in \mathbb{F}_{q}[x]$ be a pol of degree n. USe can compute $\alpha_{u}(x)=x^{\alpha^{k}} \bmod t$ for $k=1, r n$ in $\widetilde{\sigma}\left(n^{2}+n \log q\right)$.

Bf First, compute $\alpha_{1}(x)=x^{q}$ in $\tilde{\theta}(n \log q)$ using fast exponentiation. Afterwards:

Claim: Te can compute $\alpha_{1}, \ldots, \alpha_{2} r$ in $\tilde{\theta}\left(n^{2} \text { 佼 } r\right)^{\prime \prime}$ for $r \leqslant\left\lceil\log _{2} n\right\rceil$.
\&f Assume we've computed $\alpha_{1, \ldots,} \alpha_{2^{1-1}}$.

value of the pol. $\alpha_{2 r}(x)$
at $\alpha_{i}(x)$ in the ring

$$
\mathbb{F}_{q}[x] /(f) \text {. }
$$

Arithmetic in $\mathbb{F}_{q}[x] /(f)$ takes time $\mathcal{\theta}(n)$.
\Rightarrow Since $2^{r-1} \leq n$, by Lemma 10.1.3, we can compute $\alpha_{2^{r-1}+i}$ for $i=1, \ldots, 2^{r-1}$ in $\tilde{\theta}\left(n^{2}\right)$ after computing α_{i} for $J=1,-1,2^{r-1}$ in $\tilde{\theta}\left(n^{2}(r-1)\right)$.
ear 10.1 .5 㐁 $f^{f} \| \in \mathbb{F}_{q}[x]$ of degree n and $g e \mathbb{F}_{q}(x)$ of dog. $<n$. We can compute $g\left(x^{9^{4}} \bmod f(x)\right.$ for $k=1, \ldots n$ in $\tilde{\theta}\left(n^{2}+n \log q\right)$.
(f) $g(x)^{\mu^{k}} \equiv g\left(x^{a^{k}}\right) \equiv g\left(\alpha_{k}\right)$ mod f.
\Rightarrow It suffices to evaluate g at $\left.\alpha_{1}, \ldots, \alpha_{n} \in F_{q}[x] / 4\right)$.
Summary we cam compute the degree k ports of f for $k=1, \ldots, n$ in $\theta\left(n^{2}+n \log q\right)$.
 bit operations (not the more seprensüe operations in IF qI)
10.2. Equal -degree factorization

Lemma 10.2.1 Lat $f \in \mathbb{F}_{q}[x]$ be
the product of m irred. pol. of degree d (no

Assume we are given the pol. $\alpha_{i}=\left(x^{a^{i}} \bmod f\right)$ for $i=0, \ldots, 1$. Then, we can find a random splitting $f=$.

$$
\begin{aligned}
& \mathbb{P}\left(\operatorname{deg}(g)={ }^{k d}(6)=\binom{m}{k} p^{k}(1-p)^{m-k} \text { for } l=0, \cdots, m,\right. \\
& \text { where } P=\frac{\left\lceil\frac{1}{2} q\right\rceil}{q} .
\end{aligned}
$$

Sf

$$
\Rightarrow \mathbb{F}_{q}[x) /(f) \cong \prod_{i=1}^{m} \mathbb{F}_{q}[x] /\left(f_{i}\right) \cong \prod_{i=1}^{m} \mathbb{F}_{q} d .
$$

Beck $a_{0}, \cdots, a_{n-1} \in \mathbb{F}_{q}$ uniformly at random.
$\Rightarrow \varphi_{a}:=a_{0}+\ldots+a_{n-1} x^{n-1} \bmod f$ is a uniformbytrandom elemer of $\mathbb{F}_{q}(x) /(f) \cong \prod_{i=1}^{m} \mathbb{F}_{q} d$.
Consider the trace mar Ir sending X to $X+x^{q}+x^{q^{2}}+\ldots+x^{q-1}$
(leneartares)

$$
=\alpha_{0}+\alpha_{1}+\ldots+\alpha_{d-1} .
$$

On $\mathbb{F}_{q d}$, it's the $($ field $)$ trace max $I r_{\mathbb{F}_{q} d \mathbb{F}_{q}}: \mathbb{F}_{q} d \rightarrow \mathbb{F}_{q}$.
\sim We get a map $\Pi \mathbb{F}_{q} d \rightarrow \pi \mathbb{F}_{q}$.
linear sujective
Each element of π Hg has the same number of preimages.
$\Rightarrow \operatorname{Ir}\left(\varphi_{a}\right)$ is a uniformly random element of $\mathbb{I} \mathbb{F}_{4}$. II

Let $v_{k}(x)=\left\{\begin{array}{l}x+10 x^{2}-x\end{array}\right.$ as in lemma 8.3.
Now, ged (ti tit $(\varphi a))$ is divisible by f_{i} if and only if the image of प्q(er $\left.\left(\varphi_{a}\right)\right)$ in the i-th factor \mathbb{F}_{q} is 0 . since $v_{q}(x)$ has $\left\lceil\frac{1}{2} q\right\rceil$ roots in \mathbb{F}_{q}, this happens with prob. P. The events for different i are all independent.
Cor 10.2.2 We can factor any f as in Lemma 10.2. 1 in expected time $\theta\left(n^{2}+u \log q\right)$.
Af lithe $T \ln 8.4$.
lonsbining all factorication sters (squarefree, distinct-degree, equal-dynn
Ihm 10.2.3 (vow zathen shoup: lomurting Irobenius mps and fastoring
We can factor a pol. $f \in F_{A}[x]$ of degree u in time $\tilde{\theta}\left(n^{2}+n \log q\right)$.
Bumk Shis is a facter of $\left(\frac{1}{n}+\log q\right)$ worse than the trio. lower bound $\theta(n)$.
(Ef) Ihere are faster algorithus (improving n, but not logg)
Kattofen-Shour: Lubquadrati-tine factoring of
polynamials over finte fields
(baby mita/giant stor als.) Ractorization and
Kedlaya-Uwans: East polynomial factorication and modular composition
(better modular comp. \& baby sten (geaut strn)
essentially:

$$
n+\log q \sim n^{1 / 2}+\log q
$$

[Don'thnow how to improve the logq factor evem when just countins linear factos!]
11. Factoring over nonarchimedean local fields

Let K be a monarch. local field with
normalised valuation $v:$ mar $\left.v s k \rightarrow \sum \cup\{0\}\right\}$ A. .

$$
\begin{aligned}
v(x) & =\infty \in x \\
v(x) & =v(x)+v(x)
\end{aligned}
$$

$v(x y)=v(x)+v(y)$
$v(x+y) \geqslant$ $v(x)=v(x)+v(y)$
$v(x+y) \geq \min (v(x), v(y))$
uniformize π : el. $\pi \xi_{\rho}^{k} . A . v(\pi)=1$
ring of integers $\theta=\{x \in K: v(x) \geqslant 0\}$
prime ideal $\quad q=\{x \in K: v(x) \geqslant 1\}=(\pi)$
(finite) residue field $k=V / \angle \rho=1 F_{q}$

$$
\pi=p, \theta=z_{p}, q=(p), k=\mathbb{F}_{p}, q=p .
$$

数

In computation we won'tworh with element of O (or (k), but with Assurosermations in O/ is ${ }^{n}$.

Ese For $K=a_{r 1}$ this involves arithmetic
base p integers with $O(k)$ digits.
(ll of Jewel's lamer
Assume $f \equiv g h \quad \bmod p^{k}$ with $f_{1} g_{1} h$ manic.

$$
\text { fist } \tilde{g}=g+巾^{n} r, \tilde{h}=h+\hbar^{k} s .
$$

$$
\Rightarrow \tilde{g} \tilde{h} \equiv \underbrace{g h+\pi^{k}}_{\text {fran }}(r h+5 g) \bmod q^{2 c}
$$

If $g_{1} h$ are relatively prime modulo i_{1}, then
Hoy are rel.prime modulo ${ }^{\prime \prime}$, so the residue class $\frac{f-g h}{\pi^{k}}$ mod p^{k} can be written uniquely as $r h+s g$ mody" with polynomials $r_{1} s$ where

$$
\operatorname{deg}(r)<\operatorname{deg}(g), \quad \operatorname{deg}(S)<\operatorname{deg}(h)
$$

Then, $\hat{g} \tilde{h} \equiv f \bmod f^{2 k}$. Proceed by induction.

Dlensel's lemma Let $f, g, h \in \theta(x)$ be manic polynomials such that $f=g h \bmod$ if, where g, h are relatively prime mode. Then there are unique pol. $\tilde{g}, \tilde{h}=0{ }_{c}{ }_{c} t$

Thu 11.1 We cav compute $\tilde{g}, \tilde{h} \bmod s^{k}$ in time $\tilde{\theta}(n k)$.
Qi HF. \square
More generally:
Sham 11.2 Let $f, 9_{1} \ldots, g_{r} \in \theta(x)$ be manic pol. such that $f \equiv g_{1} \cdots g_{r} \bmod s$, where $g_{11} \cdots g_{r}$ are paínvise relatively prime mod if. Then, we can compute the (unique) pol. $\tilde{g}_{n}, \ldots, \tilde{g}_{r} \bmod q^{k}$ such that $f=\tilde{g}_{n} \cdots \tilde{g}_{r}, \quad \tilde{g}_{i} \equiv g_{i} \bmod \&$ in time $\tilde{\theta}(n)$.
of $H W$.

Punk In general, knowing a (manic) polynomial $f \in \theta[x]$ of degree n modulo if k isn't enough to detornuine the structure of the factorisation of f in $k(x)$ no matter how large k is.
For esearglle, a manic degree 2 pol. $f(x)=x^{2} \bmod q^{k}$ could be

- a square: $f(x)=x^{2}$
- a product of two lin. pol.: $f(x)=\left(x-\pi^{i}\right)\left(x+\pi^{i}\right)=x^{2}-\pi^{2 i}$ for $2 i \geqslant \frac{6}{6}$
- irreducible: $f(x)=x^{2}-\pi^{2 i+1}$ for $2 i+1 \geq k$.
(Similarly, $x^{2}+t \in \mathbb{R}(x)$ could be a square, prod. of lin., or erred. for arbitrarily small $\epsilon_{.}$)

But if f is squarefree, then knowing f mode ${ }^{k}$ suffices for sufficiently large le (depending of f).
12.

保的 Factoring pol over \mathbb{Z}（attempt 1）
Let $f \in \mathbb{D}[x]$ w Factor f mod p for a suitable prime P ． alow does that factorication relate to that of f ？

$$
\begin{aligned}
& \text { Let } f=f_{1} \cdots f_{r} \cdot \\
& \Rightarrow f \equiv f_{1} \cdots f_{r} \bmod p
\end{aligned}
$$

Bat f_{n}, \ldots, fr could factor further $\bmod p$ ．

Burke If $p+\operatorname{dise}(f)$ ，then $f \bmod p$ is still squarefree，and vice－versa．
Lemma 12．n Lot k be a ur－field，qa prime ideal of $k, f \in \sigma_{k}(x)$ and discriminant are not divisible by p ． Consider the number field $L_{1}=[x] /(t)$ ． The polynomial f splits mods in the visemec way as the prime ideal 4

$=g_{1} \cdots q_{t}$ with prime ideals of $1 \cdots$ of of \angle
with $\theta_{m} /$ of $\cong\left(\theta_{k} /\right.$ cf $)[x] /\left(g_{i}\right)$ ．
格
If Lee e．9．Prop I． 8.3 in Neubirch is Algebraic Number Theory．

Def Let L / K be a Galois est. of number fields, φ a prime of 1 and of a prince of L dividing q.
The decomposition group is $D\left(\left.\sigma q\right|_{q}\right)=\{\leqslant \in G: \sigma(q)=o q\}$.
The inertia group is $I\left(o_{q}\left(\frac{q}{4}\right)=\left\{\sigma \in D\left(o f(k): \sigma(x) \equiv x \bmod\right.\right.\right.$ op $\left.\forall x \in \theta_{l}\right\}$.

She 12,2 a) G acts transitively on the primes of of L dividing of.
b) $D(\tau q / \mathrm{f})=\tau D(\neq \mid$ g $) \tau^{-1}$
b) $I \ldots=\tau I \ldots \tau^{-1}$
d) of divides if eseactly $|I(\log \mid \varphi)|$ times.
e) I $\operatorname{lop} \mid \mathrm{c})$ is a normal subgroup of $D(o g \mid a)$ with $D\left(\left.o f\right|_{q f}\right) / I(q / y) \cong \operatorname{lgal}\left(\theta_{L} /{ }_{\text {of }} \mid v_{u} / q\right)$.
Cor 12.3 If $e=|I(o p \mid / 8)|$ and $e f=\frac{|D(o p \mid c)|}{\text { end } e f r=|5|=[L: K ~}$ then $g \theta_{L}=\sigma_{1}^{e} \cdots \sigma_{r}^{e}$ with $\left[\theta_{L} / \sigma_{i}: \theta_{k} / \rho\right]=f$.

An irreducible
be ionic pol. such
Q with Galois group θ.
Unfortunate Cor 12,4 Let $f \in a(x)$ be manic pol. such that $L=\mathbb{Q}[x] /(t)$ is a galois ext. of Q with galois group θ.

Unless G is cyclic, f splits modulo every prime P.
Of IE $p \mid \operatorname{dic}(f)$, then $f-\bmod p$ is not squarefree.
If $p+\operatorname{dise}(f)$, then $f \bmod p$ splits like p in $L . \Rightarrow I(a / p)=1$ (u ram.)

Extreme So Sot $P_{1} \cdots, p_{k}$ be distinct prime numbers. $Q=Q\left(\sqrt{P_{1}}, \cdots, \sqrt{P_{k}}\right)$ is a galois ext. of Q with Galois group ${ }^{6}=(\mathbb{T} / 2 z)^{k}$. The larges f cyclic subgroups of G movertien have 2 .
$L=Q(\underbrace{\sqrt{p_{1}}+\ldots+\sqrt{p_{m}}}_{\alpha^{\prime \prime}})$. Let $f^{\in \mathbb{E}(x)}$ the min. pol, of $\alpha \in \theta_{L}$
For any $p \nmid \operatorname{disc}(f)$, the pol. Erode split either into 2^{k} linear factors (if $(D \mid=1)$ or into 2^{k-1} quadratic factors (if $|D|=2$).

Sumer "For a random ionic pol. $f \in \mathbb{Z}[x]$ of degree n, with probability
a) I he Galois closure of $Q(x] /(t)$ over Q has Galois group Sn
uNi) For a random prime p, f mod is irreduable with probability $\frac{1}{n}$."
(The proof of c) uses the Chebotarev density theorem.)
13. Lattice reduction

Def \& lattice $\Lambda \subset \mathbb{R}^{n}$ is a set of the form

$$
\Lambda=\mathbb{Z} v_{1}+\ldots+\mathbb{Z}_{v_{n}}=\left\{a_{1} v_{1}+\ldots+a_{n} v_{n} \mid a_{11},-, a_{n} \in \mathbb{Z}\right\}
$$

with linearly independent vectors v_{1}, \ldots, v_{n}.
Such v_{1}, \ldots, v_{n} are called a basis of 1 .
Rom we cav encode a basis $\left(v_{1}, \sim, v_{n}\right)$ of 1 as a matrix

$$
\left(\begin{array}{c}
-v_{1}- \\
\vdots \\
-v_{n}
\end{array}\right) \in G L_{n}(\mathbb{R})
$$

A change of basis corresponds to left multiplication by an element of $6 \angle_{n}(\mathbb{Z})$.
Hence, we obtain a bijection

$$
\left\{\Lambda \subset R^{n} \text { lattice }\right\} \longleftrightarrow G L_{n}(\mathbb{Q}) \backslash G L_{n}(\mathbb{R})
$$

Goal For a given lattice 1 with basis $\left(v_{1}, \ldots, v_{n}\right)$, find a basis ($V_{1,} \sim w_{n}$) consisting of "nearly as short as possible" vector $w_{11} \ldots, w_{n}$.

Def Let v_{1}, \ldots, v_{n} be a basis of \mathbb{R}^{n}.
For $i=1, \ldots n$, let v_{i}^{*} bethe component of v_{i} orthogonal to the subspace $\left\langle v_{1}, \ldots, v_{i-1}\right\rangle$, i.e.:

$$
v_{i}^{*} \perp v_{1} 1-\cdots, v_{i-1}
$$

and $v_{i}-v_{i}^{*} \in\left\langle v_{11}, v_{i-1}\right\rangle$.
Write $v_{i}=v_{i}^{*}+\sum_{j=1}^{i-1} \mu_{i j} v_{j}^{*}$

with $\mu_{i j} \in \mathbb{R}($ for $j<i)$.
The vectors $v_{1}^{*}, \ldots, v_{n}^{*}$ are the Gram-1ohmidt basis for v_{1}, v_{n}.
The numbers $\mu_{i j}(j<i)$ are the Gram-lchindt cofffeciont
Lecumaniz. 1
a) $\left\langle v_{1}, m, v_{i}\right\rangle=\left\langle v_{1}^{*}, \cdots v_{i}^{*}\right\rangle$ for $i=1, \cdots, n$.

In part., $v_{1}^{*}, \cdots, v_{n}^{*}$ form a basis of \mathbb{R}^{n}.
b) $v_{i}^{*} \perp v_{j}^{*}$ for all $i \neq j$.
c) $\mu_{i j}=\frac{v_{i} \cdot v_{j}^{*}}{\left|v_{j}^{*}\right|^{2}}$.
d) $\left|v_{i}\right|^{2}=\left|v_{i}^{*}\right|^{2}+\sum_{j=1}^{i-1} \mu_{i j}^{2}\left|v_{j}^{*}\right|^{2}$.

If a) induction over
b). Clear from)
c) projection formula
d) Pythagoras.
e) clear

$$
\text { e) }\left(\begin{array}{c}
-v_{1}- \\
\vdots \\
-v_{n}-
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
\mu_{21}- & 0 \\
\vdots & \ddots \\
\mu_{n 1}-\mu_{n, n} \cdot ⿺ 𠃊
\end{array}\right)\left(\begin{array}{c}
-v_{1}^{*}- \\
\vdots \\
-v_{n}^{*}-
\end{array}\right)
$$

$\varepsilon_{8}(u=2)$

Ilun13.3 Letvan"un be a basis of \mathbb{R}^{n}. such that the $y-s$ calf. for the basis $w_{1} \ldots, w_{n}$ given by $w_{i}=v_{i}-\sum_{j=1}^{i-1} a_{i j} v_{j}$ satisfy $\left|\mu_{i j}\right| \leq \frac{1}{2}$ for all $j<i$ Flat, They can be computed using $\theta\left(n^{3}\right)$ operations in \sqrt{n}
Oral $a)\left(\begin{array}{c}-w_{n}- \\ \vdots \\ -w_{n}\end{array}\right)=\left(\begin{array}{cc}1 & \\ & 0 \\ a_{i j} & 1\end{array}\right)\left(\begin{array}{c}-v_{1}- \\ \vdots \\ -v_{n}\end{array}\right)$
b) $w_{i}^{*}=v_{i}^{*}$ for $i=1, \cdots, n$.

Pf of $5 \ln$ For $i=1, \ldots, n:$
For $j=i-1, \ldots, 1$.
Subtaof an appropriate integer multiple of row j from row i to make $\left|\mu_{i j}\right| \leq \frac{1}{2}$.
Ex $(u=2)$

sham 13. 4 Let $n=2$. The following algorithm computes a basis $w_{n} w_{2}$ of $\Lambda=\mathbb{Z} v_{1}+\mathbb{Z} v_{2}$ sued that w_{1} is a shortest nonzero vector in 1 :
Alg 1) Replace $v_{11} v_{2}$ by the basis computed in Ihm 13.3 such that $\left|\mu_{2 i}\right| \leqslant \frac{1}{2}$.
2) If $\left|v_{1}\right| \leqslant\left|v_{2}\right|$:

Return $w_{1}=v_{1}, w_{2}=v_{2}$.
If $\left|v_{1}\right|>\left|v_{2}\right|$:
Swap v_{1}, v_{2} and return to step 1.
If correctness: Assume the alg. returned ω_{1}, w_{2}.
early, w_{1}, w_{2} still form a basis of 1 .
we have $\left|\mu_{21}\right| \leq \frac{1}{2}$ and $\left|\omega_{1}\right| \leq\left|w_{2}\right|$.

That there is no shorter nonzero vector in 1 than u is "lear from the picture". Formally:

$$
\begin{aligned}
&\left|b_{1} w_{1}+b_{2} w_{2}\right|^{2} \\
&= b_{1}^{2}\left|w_{1}\right|^{2}+b_{2}^{2}\left|w_{2}\right|^{2}+2 b_{1} b_{2} \underbrace{\left(w_{1} \cdot w_{2}\right)}_{\mu_{1}\left|w_{1}\right|^{2}} \\
& \geq \underbrace{\left(b_{1}^{2}+b_{2}^{2}-b_{1} b_{2}\right)\left(\left.w_{1}\right|^{2} \geqslant\left|w_{1}\right|^{2}\right.}_{\geqslant 1} \\
& \text { for all }(0,0) \neq\left(b_{1} b_{2}\right) \in \mathbb{Z}^{2} .
\end{aligned}
$$

algorithm terminates:- $\left|v_{1}\right|$ gets smaller in every iteration. But 1 has only finitely many vectors of length less than the original $\left|v_{1}\right|$.

Ibm 13.5 Assume $v_{1}, v_{2} \in \mathbb{R}^{2}$ and the coordinates c of v_{1}, v_{2} satisfy $|c| \leq B$. Then, the algorithm from $\operatorname{Ihm} 13,4$ takes $O(\log B)$ steps (for large $B)$.
$(\Rightarrow$ polynomial running time in sire of the input!)
O\& Bephrase the alg as follows:

$$
\begin{aligned}
& \text { w.l.og. }\left|v_{1}\right| \geqslant\left|v_{2}\right| \\
& v_{1}:=v_{1}, \quad v_{2}:=v_{2} \\
& u_{i+2}:=v_{i}-k_{i} v_{i+1} \text { with } k_{i}=\operatorname{round}\left(\frac{v_{i} \cdot v_{i+1}}{\left|v_{i+1}\right|^{2}}\right) \in \mathbb{R}
\end{aligned}
$$

until $\left|v_{j+1}\right|>\left|v_{j}\right|$.
Then, we return $w_{1}=v_{j}$, $w_{2}=v_{j+1}$.
early, $\left|v_{1}\right| \geqslant\left|v_{2}\right|>\ldots>\left|v_{j}\right|$. Let $\delta=\frac{11}{10}$.
Claim: tratstotornts
For all $1 \leq i \leq j-3$, we have $\left|v_{i}\right|>\delta\left|v_{i+2}\right|$.
Of Assume $\left|v_{i}\right| \leq \delta\left|v_{i+2}\right|$.
$\Rightarrow\left|v_{i}\right| \leq \delta\left|v_{i+1}\right|$ and $\left|v_{i+1}\right| \leq \delta\left|v_{i+2}\right|$.
 u_{i+2} lies in the vertical strip and in th ier amulus. v_{i} lies in the outer annulus. $v_{i+2} \in v_{i}+\mathbb{Z} v_{i+1}$. $\Rightarrow v_{i+2}$ lies in the shaded region.

In portialar, v_{i+2} doesn's lie in the interior of the balls C_{1} or C_{2}.
\Rightarrow The projection of v_{i+1} onto v_{i+2} has length $\left.\leq \frac{1}{2} \right\rvert\, v_{i+i}$

$$
\begin{aligned}
& \Rightarrow v_{i+3}=v_{i+1} \cdot \\
& \Rightarrow\left|v_{i+3}\right|=\left|v_{i+1}\right|>\left|v_{i+2}\right| \\
& \Rightarrow ;=i+2 \&
\end{aligned}
$$

The claim implies that the total number of stops is $\theta\left(\log _{S} B\right)$ because $\left|u_{1}\right|^{2} \leq \theta(B)$ and each $\left|v_{i}\right|^{2}$ is an integer.

Def \& basis $v_{1},-, v_{n}$ of $A R^{\prime} u$ is $\frac{L L L \text {-reduced }}{T}$ if its $g-s$ basis and coff
 and $\left\|v_{i+1}^{*}\right\|^{2} \geqslant \frac{1}{2}\left\|v_{i}^{*}\right\|^{2}$.
Reference chapter 16 of "ulodern Computer- Algebra".
Lemma 13.5 any $0 \neq r \in \Lambda$ satisfies

$$
\|r\|^{2} \geqslant \frac{1}{2^{n-1}} \cdot\left\|v_{1}\right\|^{2}
$$

[v_{1} is "almost" as short is possible.]
Of Write $r=b_{1} v_{1}+\ldots+b_{k} v_{k}$ with $k \leq n, b_{11}, b_{k} \in \mathbb{Z}, b_{n}+c$

The component of r orthogonal to $\left\langle v_{11}, \cdots, v_{k-1}\right\rangle$ is $b_{k} v_{k}^{*}$.

The 13.6 The following alg. competes an LLL-reduced basis of a lattice $\Lambda=\mathbb{Z} v_{1}+\ldots+\mathbb{D}_{v_{n}}$ (if it terminates).
$\operatorname{Alg} 13.6$

1) Compute the $\mathcal{G}-8$ basis $v_{1}^{*}, \ldots, v_{n}^{*}$ (which we 'le keep up to date as we change $\left.v_{11} \cdots, v_{n}\right]$.
sot $i \leftarrow 1$.
While $i \in n$:
[2) For $j=i-1, \ldots, 1:$
$\left[\begin{array}{c}\text { subtract round }\left(\mu_{i j}\right) \\ \text { " } 1 . v_{i}^{*} \\ \frac{v_{i} v_{j}^{*}}{\left|v_{j}^{*}\right|^{2}}\end{array}\right.$ times v_{j} from v_{i} to make $\left|\mu_{i j}\right| \leq \frac{1}{2}$
2) If $i \geq 2$ and $\left|v_{i}^{*}\right|^{2}<\frac{1}{2}\left|v_{i-1}^{*}\right|^{2}$:
(4) I way v_{i}, v_{i-1}. Recompute v_{i}^{*}, v_{i-1}^{*}.

Return to $i \leftarrow i-1$.
Otherwise:
Proceed to $i \leftarrow i+1$.
Return V_{1}, \ldots, V_{n}.
Pf ecorrectress is clear: At the beginning of any while loop, $v_{11} \ldots, v_{i-1}$ satisfy the LLL-reduadness criterion.

Quiz The alg-always terminates, but that 's hess obvious. well show that it has polynomial ruming time if $v_{n}, \cdots, v_{n} \in \mathbb{Z}^{n}$.

Lemma 13.7 Let v_{1}, \ldots, v_{n} be a basis of \mathbb{R}^{n} and $z \in_{i} \leq_{n}$ with $\left|\mu_{i, i-1}\right| \leq \frac{1}{2}$ and $\left|v_{i}^{*}\right|<\frac{1}{2}\left|v_{i-1}^{*}\right|$.
Lot $w_{1, \ldots,}, w_{n}$ be the same basis, but with $v_{j,}, v_{i-1}$ scoop Then:
a) $w_{j}^{*}=v_{j}^{*} \quad \forall j \neq i, i-1 . \quad\left[\Rightarrow w_{0}\right.$ an dy reed to update v_{i}^{*}, v_{i-1}^{*} in $\left.\operatorname{stap} 4.\right]$
b) $\left|w_{i-1}^{*}\right|^{2}<\frac{3}{4}\left|v_{i-1}^{*}\right|^{2}$
c) $\left|w_{i}^{*}\right| \leq\left|v_{i-1}^{*}\right|$.
d) $\left|w_{i-1}^{*}\right| \cdot\left|w_{i}^{*}\right|=\left|v_{i-1}^{*}\right| \cdot\left|v_{i}^{*}\right|$.

Of a) $\left\langle w_{1}, \ldots, w_{j-1}\right\rangle=\left\langle v_{1}, \cdots, v_{j-1}\right\rangle$ and $w_{j}=v_{j}$.
b-d) Only the components of v_{i-1}, v_{i} orthogonal to $\left\langle v_{11}, \ldots, v_{i-1}\right\rangle$ matter for the computation of $v_{i-1}^{*}, v_{i}^{*}, \omega_{i-1}^{*}, \omega_{i}^{*}, \mu_{i, i-1}$.
bet $\bar{v}_{i 1}, \bar{v}_{i-1}$ be these components of v_{i}, v_{i-1}.

b) $\left|w_{i-1}^{*}\right|^{2}=\left|v_{i}^{*}\right|^{2} \times \mu_{i, i-1}^{2}\left|v_{i-1}^{*}\right|^{2} \quad$ by Pythagoras $<\frac{1}{2}\left|v_{i-1}^{*}\right|^{2}+\frac{1}{4}\left|v_{i-1}^{*}\right|^{2}=\frac{3}{4}\left|v_{i-1}^{*}\right|^{2}$.
c) dear
d) $\left|v_{i-1}^{*}\right| \cdot\left|v_{i}^{*}\right|=$ area of the parallelogram spared by $\overline{v_{i-1}}, \overline{v_{i}}$

$$
\left|w_{i-1}^{*}\right| \cdot\left|w_{i}^{*}\right|=
$$

u

Omb For any $0 \leq k \leq n$,

$$
\begin{aligned}
& d_{u}=\left|v_{1}^{*}\right|^{2} \ldots\left|v_{k}^{*}\right|^{2} \\
&=(k \text {-dimensional volume of the parallelep jed })^{2} \\
& \text { spared by } v_{1}, \ldots, v_{u} \\
&=\operatorname{det}\left(M_{u}\right),
\end{aligned}
$$

for the $k \times k$-matrige $M_{k}=\left(v_{i}-v_{j}\right)_{1 \leq i, j \leq k}$.
In particular, if $v_{1}, \cdots, v_{n} \in \mathbb{Z}^{n}$, then $d_{0, \ldots,} d_{n} \in \mathbb{R}$.

Lemma 13.8 If v_{1}, \cdots, v_{n} hie in \sum^{n} and $\left|v_{1}\right|_{1},\left.\right|_{v_{n}} \mid \subseteq B$, then Alg. 13.6 does at most $\theta\left(n^{2} \log B\right)$ swaps (line 4).

Pf Consider the integer $D=d_{1} \cdots d_{n-1}>0$.
In the beginning,

$$
\begin{aligned}
i d d_{k} & =\left|v_{1}^{*}\right|^{2} \cdots\left|v_{k}^{*}\right|^{2} \leq\left|v_{1}\right|^{2} \cdots\left|v_{k}\right|^{2} \leq B^{2 k}, \\
\text { so } D & \leqslant B^{2(1+\ldots-(n)(n-1))}-B^{n(n \overline{-1}))}
\end{aligned}
$$

Dopily change in line 4, in which it decreases at least by a factor of $\frac{4}{3}$.
(More precisely, d_{i-1} decreases, while $d_{1, \ldots}, d_{i-2}, d_{i}, \ldots, d_{n-1}$ remain the same.) by Lemma 13.7 b
\Rightarrow Line 4 can only rem $\theta\left(\log _{\frac{4}{3}}\left(B^{n(n-1)}\right)\right)=\theta\left(n^{2} \log B\right)$ times

Cor 13.9 Alg. 13.6 performs $\theta\left(n^{4} \log B\right)$ operations in Q.
Of 1) $\theta\left(n^{3}\right)$

$$
\theta\left(n^{2} \log B\right) \text { times }\left\{\begin{array}{l}
\text { 2) } \theta\left(n^{2}\right) \\
\text { 3) } v(n) \\
\text { 4) } \theta\left(n^{2}\right)
\end{array}\right.
$$

Lemma 13.10 For $v_{11 . .} v_{n} \in Z^{n}$, we have

$$
d_{k-1} v_{k}^{*} \in \mathbb{Z}^{n} .
$$

Pf She orth, projection $v_{k}-v_{u}^{*}$ onto $\left\langle v_{1,-1} v_{k-1}\right\rangle$ is given by the formula

Cor 13.11 (bound on denominates)
If $v_{11}, v_{n} \in \mathbb{C}^{n}$ with $\left|v_{1}\right|, \ldots,\left|v_{n}\right| \leq B$, then in , $\lg .13 .6$, the vectors v_{k}^{*} at any time satisfy $t v_{k}^{*} \in \mathbb{Z}^{n}$ for some $t \in \mathbb{E}$ with $\log (t)=O(n \log B) . \quad$ ("bounded denominators")

Pf d_{k-1} is norincreasing and $d_{k-1}=O(n \log B)$ in the begirming.
[alow long can the vectors be?]
Lemma 13.12 If $\left|v_{1}\right|, \ldots,\left|v_{n}\right| \leq B$ in the beginning, then ding Hey. 13. 6:
a) $\left|v_{1}\right|, \ldots,\left|v_{n}\right|^{*} \leq \sqrt{n} B$
esecept possibly during step 2 .
b) $\left|v_{n}\right|_{1 \sim},\left|v_{n}\right| \leq n(2 B)^{m}$
during step 2 .
Cor 13.13 we log $\left|v_{1}\right|_{1}-, \log \left|v_{n}\right| \leq \theta \mid n \log B$) (for large B).
of a) heeds in the beginning.
mace $\left(\left|v_{1}\right|, \ldots,\left|v_{n}\right|\right)_{\text {and }}^{\text {an }}$ ely charge during step 2 (where $\left|v_{i}\right|$ might chang Apter step $2, \quad\left|\mu_{i j}\right| \leq \frac{1}{2} \quad \forall j<i$.
Then, $\left|v_{i}\right|^{2}=\left|v_{i}^{*}\right|^{2}+\sum_{j<i} \mu_{i j}^{2}\left|v_{j}^{*}\right|^{2}$.
By Lemma 13.7, max $\left(\left|V_{1}^{*}\right|, \ldots,\left|v_{n}^{*}\right|\right)$ is nonincreasing.
In the beginning, it ' $\Delta \leq B$.

$$
\Rightarrow\left|v_{i}\right|^{2} \leq B^{2}+\sum_{j<i} \frac{1}{4} B^{2} \leq n B .
$$

b) At the beginning of step Z,

$$
\left|\mu_{i j}\right|=\frac{\left|v_{i} \cdot v_{j}^{*}\right|}{\left|v_{j}^{*}\right|^{2}} \leq \sqrt{n} \cdot B \cdot B \cdot B^{2(j-1)}=\sqrt{n} \cdot B^{2 j} \leq \sqrt{n} \cdot B^{2(n-1)}
$$

because $\left|v_{i}\right| \leq \sqrt{u} \cdot B,\left|v_{j}^{*}\right| \leq B, \quad\left|v_{j}^{*}\right|^{2}=\frac{d_{j}}{d_{j-1}} \geqslant \frac{1}{d_{j-1}} \geqslant B^{-2(j-1)}$. Moreover, $\left|v_{j}^{*}\right| \leq\left|v_{0}\right| \leq \sqrt{n} B$.
Whensubtrating round $\left(\mu_{i j}\right) \cdot v_{j}$ from v_{i},

$$
\left.\mu_{i k} \text { changes by p(rocind } \mu_{i j}\right) \left.\left.\cdot \underbrace{\mu_{\bullet j k}}_{1 \cdot 15 \frac{1}{2}}\right|^{\prime} \leq \mu_{i j} \right\rvert\,+\frac{1}{2}
$$

\Rightarrow At the beginning os

$$
\max \left(1,\left|\mu_{i}\right|_{1} \ldots,\left|\mu_{i, i-1}\right|\right) \leq 2^{i-j-1} \cdot \sqrt{n} B^{2(n-1)} \leqslant 2^{n-2} \cdot \sqrt{n} \cdot B^{21}
$$

(every time we handle an indesej, the LHS at most increases by a factor of 2).

Then, $\left|v_{i}\right|^{2}=\left|v_{i}^{*}\right|^{2}+\sum_{k<i} \mu_{i k}^{2}\left|v_{k}^{*}\right|^{2}$

$$
\begin{aligned}
& \leq 2^{2(n-2)} n B^{4(n-1)} \cdot n B^{2} \\
& \leq n^{2}(2 B)^{4 n} .
\end{aligned}
$$

Summary
Ilo 13.13 If $v_{1}, \ldots, v_{n} \in \mathbb{Q}^{n}$ with $\mid v_{n}\left(\ldots,\left|v_{n}\right| \leq B\right.$, then Alg. 13.6 has rumbaing time $\tilde{\theta}\left(n^{5}(\log B)^{2}\right)($ on an $\theta(\log (n \log s))-6$ $R A M$).

Ql The rational numbers computed in the alg -have numerates and denominators with $O(n \log B)$ bits. This shows the claim with for 13.9.
14. Factoring over the integer, attempt -2

We will identify a pol. $f_{N} \in a_{n} x^{n}+\ldots+u_{0}[x]$ of degree \leq_{n} with the vector $\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{C}^{n+1}$. we'le write $|f|=|f|_{2}=\sqrt{a_{0}^{2}+\ldots+a_{n}^{2}}$ for its cudidem length.

Reminders:
Lemma 14.1 If $f \in \mathscr{C}(x)$ is divisible by the pol- $g \in Z(x)$ of degree in the ring $E(x)$,
then $|g| \leq \sqrt{d+1} \cdot 2^{d} \cdot|f|$.
If mediate consequence of Cor 7.42 . 0
Lemma 14,2 If $f, g \in \mathbb{D}(x)$ are pol. of degrees n, m, then

$$
\begin{aligned}
& |\operatorname{Res}(f, g)| \leq|f|^{m} \cdot|g|^{\prime \prime} \\
& \text { al } \operatorname{aes}(f, g)=\operatorname{det}[\underbrace{[f]}_{m}[\underbrace{f}_{n}\left[\begin{array}{ll}
g \\
\left.[]^{g}\right] \\
{[}
\end{array}\right] \text {. }
\end{aligned}
$$

Shim 14.3 we can factor any polynomial $f \in \mathbb{C}(x)$ of degree n with $|f| \leq B$ in the ring $Q(x)$ in time $\tilde{\theta}\left(n^{10} n^{8}(\log B)^{2}\right)$.

Q1 Let p be a prime.
we can factor $f \bmod p$. Lot $a \in \mathbb{F}_{p}[x]$ be a_{n} irreducible factor of degree t.
goal: Find an (the) irreducible factor $g \in \mathbb{Z}(x)$ of f which is divisible by a modulo p.
we don'A know deg (g), so will try $d=t, t+1, \ldots, n$.
$\Rightarrow|g| \leq \sqrt{d+1} \cdot 2^{d} \cdot|f|=: A$.

Consider the set
$\Lambda=\{\tilde{g} \in \mathbb{E}(x)$ of deg. $\leq d \mid u$ divisible by $a \bmod p\}$.
It is a lattice $\Lambda \subseteq \mathbb{Z}^{d+1} \subset \mathbb{R}^{d+1}$ (of rank $d+1$ because it contains $p \cdot e^{d+1}$).
zeow to find a basis?
Let $\Lambda^{\prime}:=\left\{h \in F_{p}[x]\right.$ of dey. $\leqslant d \mid h$ divisible by $\left.a\right\}$.
This \mathbb{F}_{p}-vector space is generated by

$$
a(x), x \cdot a(x), \ldots, x^{d-t} \cdot a(x)
$$

- The ref of the matrix with rows $a(x)_{1, \ldots} x^{d-t} \cdot a(x)$ gives us a basis of 1 !.
A basis of 1 consists of the lifts of these basis vectors (tor together with the vectors $p \cdot X$ ' where the column corr. tox in the ref hoo no leading 1 ,

If $d=\operatorname{deg}(g)$, then $g \in \Lambda$.
We can use 1 ll. 13.6 to find an LLL-reduced basis of 1. By Lemma 13.5, the first basis vector, $\tilde{g} \in 1$ has "almost-misinual length", so in particular

$$
|\tilde{g}| \leq 2^{d / 2} \cdot|g| \leq 2^{d / 2} \cdot A=: \tilde{A} \text { if, } d=\operatorname{deg}(g) \text {. }
$$

By definition, both g and \tilde{g} are modulo p divisible by a.
$\Rightarrow \operatorname{gcd}(g \bmod p, \tilde{g} \bmod p) \neq 1$

$$
\begin{equation*}
\Rightarrow \operatorname{Res}(g, \tilde{g}) \equiv 0 \bmod p \tag{I}
\end{equation*}
$$

Let's choose $p>\left(A^{\cdot} \tilde{A}\right)^{d}$.

$$
\begin{equation*}
\Rightarrow p>(|g| \cdot|\tilde{g}|)^{d} \geqslant|\operatorname{Res}(g, \tilde{g})| . \tag{II}
\end{equation*}
$$

ampra14.2

$$
\begin{aligned}
\text { (I), (II) } & \Rightarrow \operatorname{Res}(g, \tilde{g})=0 \\
& \Rightarrow \operatorname{ged}(g, \tilde{g}) \neq 1 \\
& \Rightarrow g(\tilde{g} \text { in } \mathbb{Q}(x)
\end{aligned}
$$

girreducible.
$\vec{A} \quad \tilde{g}=\lambda \cdot g$ for some $\lambda \in \mathbb{R}^{x}$. $\operatorname{dog}(\tilde{g}) \leq d \leq d \operatorname{dg}(g)$ preave found an in red. factor of f. Divide f by g and pliminde all mod p factors of. dividing 9 . Then continue...
70 d- dea (q), then the basis vector \tilde{I} obyiocisly cant divide f.

Total reusing time: $\theta\left(n^{10}+{ }_{n} 8(\log B)^{2}\right)$.
lome practical remarks:
Omb ${ }^{144}$ Since the alg. For 2lensel's lemma has near-linear running time but factoring in \mathbb{F}_{P} has an extra ruerring time factor of $\log p$, it Is better to factor $f \bmod p^{k}$ with $p^{k}>(A \tilde{A})^{d}$ and p chosen randoms. from an interval large enough to make fuodp squarefree.
(This saves time in the factoring mod p^{w} ten in the begriming, but doesn't change the theoretical upper bd. on the r. time
Omb 2 ${ }^{14.5}$ If $(f \bmod \rho)=\operatorname{lc}(f) a_{1} \cdots a_{r}$ for small r (with $a_{1}, \ldots, a_{r} \in \mathbb{F}_{p}(x)$ wosic and irreducible), it can be faster to try for every subset $S \subseteq\{1,-\cdots, r\}$ whether there is a divisor of f divisible erectly by $a_{i}(i \in S)$, bet not by $a_{i}(i \notin S)$.
To check this, Pis as long as $\frac{p}{2}>\operatorname{lc}(f) \cdot A$, it suffices to justtory what her the pol. $g \in \mathbb{C}(x)$ with $g \equiv \operatorname{lc}(f) \cdot \prod_{i \in S} a_{i} \bmod p$ and caffs. $\in\left[-\frac{p}{2}, \frac{p}{2}\right]$ divides f.
But since rear be large, this have eseprontial running time (af. extreme example in section 12).
Bubs 14.6 You e can combine $14.4,14.5$.

Sunk 14.7 vax 2loeis (Factoring polynomials and the knapsack problem) found another alg. That seems to work batter in practice (but without rigorous analysis of the pumping time): Idea:
Bor sinfliaty, assume $l_{c}(f)=1$.
slow waw we tell whether the pol. 9 in Bunk 14.5 has
shot length $(<\sec , A)$?
For a pol. f of degree n with roots $\alpha_{1}, \ldots, \alpha_{n}$, let

$$
I_{r}{ }^{\prime}(f):=\alpha_{1}^{i}+\ldots+\alpha_{n}^{i} \quad(i=0,1, \ldots)
$$

Note that the coif. of f are the el. symmm, pol. in $\alpha_{1}, \cdots, \alpha_{n}$, which can le written a. pol. in Ir ${ }^{i}(f)$ ($\left.i=1, \ldots, n\right)$. Conversely, we can wite $I^{\prime}{ }^{i}(f)$ as pol, in the cafe of f.

Clearly, $\operatorname{Ir}(f g)=\operatorname{Ir}(f)+\operatorname{Ir}(g)$.

Finding a short $g \equiv \prod_{i \in S} a_{i} \bmod p$ corresponds to finding $e_{1}, \cdots, e_{n} \in\{0,1\} \quad\left(e_{i}=1 \Leftrightarrow i \in S\right)$ such that there is a short vector

$$
v=\sum_{i \in S} \operatorname{Ir}\left(a_{i}\right)^{+p^{\omega}}=\underbrace{\sum_{i} e_{i} I_{r}\left(a_{i}\right)+p \omega}_{\text {allowed arbitrary } e_{i} \in \mathbb{Z} \text {, these }} \text { with } \omega \in \mathbb{Z}^{n} \text {. }
$$ If we allowed arbitrary $e_{i} \in \mathbb{Z}$, these would form a lattice.

Que say you move an number $\in \mathbb{R}$ which is approximate an algebraic number. Flow to find the min pol. $f \in \mathbb{E}[\ngtr]$?
say $|f| \leqslant A, \quad|f(\delta)| \leqslant B, \quad \operatorname{deg}(f) \leq n$.
Look for a short vector in the forge c (1) rank $n+1$ lattice

Amie You could also use this for a nonrigorous factoring sly: Find a complase root r of f and then find its min, pol. 9 .

BeP15. Erimality testing and integer factorisation

Sumer If $n=p_{1}^{e_{1}} \ldots p_{w}^{e_{u}}$, then

$$
\begin{aligned}
& \mathbb{Z} \ln \mathbb{Z} \cong \mathbb{Z} / p_{1}^{e_{1}} \times \ldots \times \mathbb{Z} / p_{u}^{e_{n}} \\
& (\mathbb{Z} / n \mathbb{2})^{\times} \cong\left(\mathbb{Z} / p_{1}^{e_{1}}\right)^{x} \times \ldots \times\left(\mathbb{Z} / p_{u}^{e_{x}}\right)^{x} .
\end{aligned}
$$

Bunk If p is an odd prime and 1, then $(\mathbb{Q} / p)^{x}$ is isomorphic to the ayche group $C_{\varphi\left(p^{p}\right)}$ of order $(p-1) p^{e-1}=\varphi\left(p^{e}\right)$. $\leadsto(\pi / n e)^{x} \cong C_{\substack{(p-1) p_{n-1}^{e_{n}-1} \\ 0-\rho_{i} \alpha}} \times \ldots \times C_{\left(p_{n}-1\right) p_{k}^{e_{n}-1}}$ if n is odd.
bema give determine wo ni s a perfect power ($n=m^{k}$ forsamemec, $k \geqslant 2$) $\operatorname{in} \vec{\theta}(\underline{\log n})$.
Bl Fear each $z \leqslant k \leqslant \log _{2}(n)$, complete $\lfloor\sqrt[k]{n}\rfloor$ wing Newton's method (in time $\tilde{\sigma}$ (eng

Fence, we can easily -assume that n is odd and not a perfect poon

Sere Gunk Let $n \geq 2$. Them, the set

$$
S:=\left\{a \in(a / u e)^{x} \quad \mid a^{n-1} \equiv 1 \bmod n\right\}
$$

forms a subgroup of $(\mathbb{Z} / n \mathbb{\mathbb { C }})^{x}$.
In part., either
a) $s=(\pi / n a)^{x}$ or
b) $|S| \leqslant \frac{1}{2} \cdot\left|(\pi / n 2)^{x}\right|=\frac{\varphi(n)}{2}<\frac{n}{2}$.

$$
\left(H \subseteq G \Rightarrow|H|=\frac{16 \mid}{[6:+[]}\right)
$$

Def Integers $u \geqslant 2$ with $S=(2 / n 2)^{\times}$are called
Carmichael numbers.
Bub Any prime is a Carmichael number (little Fermat).

Lemma 15.1 in odd number $\varphi\left(p_{i}^{e_{i}}\right) \mid n-1$ for all i.
星

$$
\text { " } \in
$$

$\varphi\left(p_{i}^{p i}\right) \ln -1$

$$
\begin{aligned}
& \Rightarrow a^{n-1} \equiv 1 \bmod p_{i}^{e_{i}} \quad \forall i \\
& \Rightarrow a^{n-1} \equiv 1 \bmod n
\end{aligned}
$$

$" \Rightarrow$ "Take any a sit. e mod $p_{i}^{e_{i}}$ generates the cyclic group$\left(\mathbb{T} / p_{i}^{e_{i}}\right)^{x}$ of order $\varphi\left(p_{i}^{e_{i}}\right) \neq 0 \bmod n_{1}-1$.

Es $n=3.11 .17$ is a Carmichael number.
Lemma Í. Every limichad number is squarefiel.
P\& $f_{i} \geq 2$, then $p_{i} \mid \varphi\left(p_{i} e_{i}\right)$, but $p+n-1$.

Chm 15.5 The following randomised Monte Carlo alg, detects whether an odd number $n \geqslant 3$ is larmichad with a false pos.pob. $\leq \frac{1}{2}$ and no false negatives and average ruming
$A g$ time $\approx\left((\log n)^{2}\right)$.
Pick $a \in(\mathbb{Z} / 4 \geq)^{x}$ uniformly at random.
Answer larmichael if $a^{u-1} \equiv 1 \bmod u$.

Lemma 15.3 We can pick $a \in(\mathbb{Z} / n \mathbb{Z})^{x}$ uniformly at random in eserected time $\widetilde{\sigma}(\underline{E} \log n)$.
Alg Quick $a \in \mathbb{Z} \ln \mathbb{Z}$ uniformly at random. If ged $(a, n) \neq 1$, stops over. If The ruing eserected running time is $\theta\left((\log n) \cdot \frac{n}{\varphi(n)}\right)$.

Lemma 15.4 we have $\frac{n}{\varphi(n)} \ll \log \log n$ for large n.
of

$$
\begin{aligned}
\frac{n}{\varphi(u)} & =\prod_{p \ln } \frac{1}{1-\frac{1}{p}} \\
\Rightarrow \log \frac{n}{\varphi(u)} & =\sum_{p / n} \log \frac{1}{1-\frac{1}{p}}=\sum_{p \ln }\left(\frac{1}{p}+\frac{1}{2 p^{2}}+\frac{1}{3 p^{3}}+\cdots\right) \\
& \leq \sum_{p / n} \frac{1}{p}+\theta(1)
\end{aligned}
$$

If K is the largest number $s . A . \prod_{p \leq k} p \leq n$, then

$$
\sum_{p \mid n} \frac{1}{p} \leq \sum_{p \leq k} \frac{1}{p} \sim \log \log k
$$

with $K \leq \log _{n}+\theta(1)$.

Set's look more at the grace structure of ($\mathbb{T} / \mathbb{\mathbb { E }})^{x}$:
Gunk she 2 -tor for odd, fin" the 2 -torsion subgroup is
$(\mathbb{Z} / n \mathbb{2})^{x}[2] \cong\{ \pm 1\} \times \ldots \times\{ \pm 1\}$.

Acyclic grout
Of hic group
of ever order-

Once assume that u is an odd larmishad number,
$n-1=2^{r} \cdot s$ with $r \geqslant 1$ and odds.
Then, the set

is moubroup of $(0 / n a)^{x}$.
For subgroup

$$
T_{i}:=\left\{a \in(z / u z)^{x} \mid a^{z^{i s}} \equiv 1 \bmod u\right\} .
$$

Clearly, $T_{r}=(T / n \mathbb{E})^{x}$, but $-1 \notin T_{0}$ Let be the largest ind se with $T_{C} \neq(\mathbb{\mathbb { C }} / u \mathbb{Z})^{x}$. . Consider the subgrap
(That in the smallest ur. AA. φ ($\left.p_{i}^{i}\right) l 2^{t+1}$ s for all i.

$$
U=\left\{a \in(a / n e)^{x} \mid a^{a^{2} s} \equiv \pm 1 \bmod n\right\} .
$$

Lemma 15.6 Let u le an odd larmichal number. We have $U=(\mathbb{D} / u \mathbb{Z})^{x}$ if and only if u is prime.
明 $a^{r^{2+1} s} \equiv\left(a^{e^{2} s}\right)^{2} \equiv 1 \Rightarrow a^{r^{2} s} \equiv \pm 1$
" \Rightarrow " For some i, every $z^{c+1} s$-th power in

\Rightarrow By the Chin, sem. Ohm, there is some $a \in(\Delta / n \pi)^{\times} A . A$.
$a \equiv 1 \bmod p_{i,}^{e_{i},} \quad \forall i^{\prime} \neq i$
and $a^{2^{c} s} \equiv-1 \bmod p_{i}^{e}$.
$\Rightarrow a^{2^{c} s} \neq \pm 1 \bmod u$.

Cor 15.7 There is a Monte Carlo alg. to determine whether n is prime with false pos. prob. $\leq \frac{1}{5}$, no false neg., ava. reuming time $\gamma\left((\log u)^{i}\right.$
fly Rich $a \in(\pi / n a)^{x}$ uniformly at random.
Compute $b=a^{s}$,
then $b^{b^{i}}$ for $i=1, \cdots, r$.
If $b^{2 r}:+1$, return hat mind (noteven Carmichael).
If $b^{z^{i+1}} \equiv 1$ but $b^{2 i} \neq 1$ for same i, return not prime
Otherwise, return (Enaybe) prime.
Pf Iolse pos, can only occur when $a \in U \subseteq(\mathbb{Z} / \mathrm{a})^{x}$.
(eve rn just for $i=c$)
\rightarrow
Buck There is also dotderministc alg. That determines whether n is prime in time $\widetilde{\theta}\left((\log n)^{6}\right)$. (AKS algorithm)
[Pump efssuming the generalised Riemann alypothesis, $(\mathbb{T} / n \mathbb{Z})^{\times}$is generated by $1, \ldots,\left(3(\log n)^{2}\right]$, so it suffices to check $\left.a=1, \ldots, L 3(\log n)^{2}\right\rfloor$ for a deterministic primality test (Miller ${ }^{*}$ 有est).

 All primes $p \subseteq N$ are equally likely to occur-
$d l g_{\text {such }} \leq N$ uniformly at random. If Rabin -Miller ans "prob. prime" Ktivies, return P. Otherwise, start over.
of She cumber of primes $p \leq N$ is $\geqslant \Omega\left(\frac{\mu}{\log \mu}\right)$.
\Rightarrow The alg. makes $\leqslant \theta(\log N)$ attempts on average. on each attempt, the prob. of returning a composite $n p$, is $\leq \frac{1}{2^{n}}$.

Sulk Many alg. That require choosing a random prime actually" worm with composite numbers as well:

Either they succeed, or they prove that p is composite (i.9. when trying to divide by a nonuser nonvivertible element of a/uz).
For other, you sway need to prove primality.

Lemma 15.9 \&ot $n \geqslant 3$ be au odd composite integer, ffeven a uniform! random element $a \in(\mathbb{Z} / n \mathbb{D})^{X}$ and its (multiplicative) order ord (a) (or the sire $\varphi(n)=\#\left(\mathbb{\mathbb { L }} / n \mathbb{P ^ { x }}\right)$, we can with prob. $\geq \hat{\psi}$ find a proper divisor $1<d<n$ of n in tine $\theta\left((\log n)^{2}\right)$.

Bf Write $\varphi(u)=2^{r} s$ and ord $(a)=2^{t} u$.

$$
\left(\text { ondarlp(u) } t t^{r} \text { and } v(s)\right.
$$

Claim: of the mumberdized $\left(a^{2 i v}-y n\right)$ far $i=0, \ldots, t-1$, a proper divisor.
Bf is before, lat le the smallest ur. sift $1 / 2^{c+1} s \quad \forall i$.
Let $\varphi\left(p_{i}^{e_{i}}\right)+2^{c}$ s and let $j \neq i$.
\Rightarrow We have hon.

$$
\begin{aligned}
& \begin{aligned}
f_{i}\left(\mathbb{Z} / p_{i}^{e r z}\right)^{x} & \rightarrow\{ \pm 1\} \\
x & \mapsto x^{c_{s}}
\end{aligned} \\
& \begin{aligned}
f_{j}: & \left(Z / p_{j}^{R} Z\right)^{x} \\
\rightarrow & \{ \pm 1\} \\
x & \mapsto x^{2} s
\end{aligned}
\end{aligned}
$$

with surjective f_{i}.
With prob. $\left.\frac{1}{2}, \begin{array}{l}f_{i}(a)=-1 \\ \Rightarrow a^{2}(u=1 \text { madifi }\end{array}\right\}$ independent by CRT

\Rightarrow With prob. $\geqslant \frac{1}{4}, a^{a^{2 i j} \equiv+1 \text { map }} \operatorname{ged}\left(a^{2^{2}}, 1, n\right)$ is divisible by p_{i}, but not by p_{i}.

Low to determine the ult. order of an element $a \in(\square \ln \theta)^{x_{2}}$.
Shan 15.10 (Baby-ster giant-ster aby.)
Assume we can perform arithmetic in the group θ in $\theta(1)$ and we can compare elements w.r.A. some total order on σ in $Q(1)$. We can compute the order $k<\infty$ of a (torsion) element a $\in \sigma$ in three $\theta(\sqrt{k} \log k)$ with memory $\theta(\sqrt{k})$.
Idea Let $w>\sqrt{u}$.
Write $k=i w+j$ with $1 \leq j \leq w, \quad 0 \leq i \leq w-1$.

$$
\begin{aligned}
a^{k}=1 \Longleftrightarrow & a^{i \omega}=a^{-j} \\
& \left(a^{w}\right)^{i} \text { babyster } \\
& \uparrow \text {.rant ster }
\end{aligned}
$$

dy For $e=1,2, \ldots$:
Let $w=z^{e}$.
Compute a^{-j} for $j=1, \ldots$, , and save the pairs $\left(a^{-j}, j\right)$ in a binary search tree ($B S T$).
For $i=0,1, \ldots, w-1$:
Compute (a^{w}) ${ }^{\text {. If there exists some } ; \text { in the } B S T}$ with $a^{-j}=\left(a^{w}\right)^{i}$, return the smallest such iv $+j$.
Ankh Better to use a hash table...
Orals Combining this with Lemma 15.9, we can find a nontriv. factor of a compsitointegern in $\theta(\sqrt{n})$.
"Yay.."
Problem 1) $B S 65$ alg. too slow. There are better algorithms
2) $(\mathbb{Z} / n \mathbb{\mathbb { D }})^{x}$ too tour $\left(\mathbb{\operatorname { l n } \mathbb { Z }) ^ { x }}\right.$ de.g.the indese calculus algorithm). just order $Q(D)$
divisors of n. (Shanks's lass group method).

Bub On a quantum RAM, we can compute the must. order of any $a \in(\mathbb{\mathbb { L }} / \mathrm{L} \mathbb{Z})^{x}$ in time polynomial in $\log n$. (thor is alyorthn)

Lemma 15.11 Let $n \geq 2$, let p be a prime dividing n and let $t \geqslant 1$ such that $p-1 \mid t$!. Then, the following alg. returns a divisor $d \geq 2$ of n in time $\theta(t \log n)$.
Alg (Bollard's p-1 alg.)
Sick $a \in(\mathbb{Z} / n \mathbb{Z})^{x}$ at random.
For $k=1,2, \ldots$:
Compute $a^{k!} \bmod n$

$$
{ }^{\prime}\left(a^{(n-1)!}\right)^{k}
$$

If $d:=\operatorname{ged}\left(a^{k!}-1, n\right)>1$, return d.
BL $p-1|k!\Rightarrow \operatorname{ard}(\operatorname{amod} p)| k!\Rightarrow a^{k!} \equiv 1 \bmod p$ $\Rightarrow p \mid d$.
Broblenas 1) The alg, might return the trivial divisor $d=n$. (If $n=p q$ and $(p-1|t!\Leftrightarrow q-1| t!)$, this could happen for many $a \in(\geq / n e)^{x}$.)
2) t would be large:
E.g. if $p-1=2 q$ for a prime q, then we need $t \geq q$, which could be $\Omega(\sqrt{n})$ oven for the smallest prime factor p of n.

Onus We can get rid of the problems by replacing $(\mathbb{Z} / n \mathbb{Z})^{x}$ by groups $E(\mathbb{Z} / n \mathbb{Z})$ for elliptic serves E. (Lenstra's elliptic curve method)
15.1. Pollard's tho algorithm (if lohen)

Lemma 15.1.1 Let $f:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ be a uniformly random map. Let M, T be the preperiod and period of the sequence

$$
1, f(1), f(f(1)), \ldots . \quad\left(y_{i}=f^{i}(1)\right) \text {. }
$$

We have $\operatorname{IE}(M+T) \asymp \sqrt{n}$.
Of (sketch)

$$
\begin{aligned}
& \mathbb{P}(M=m, T=t)=\left(\prod_{k=1}^{m+t-1}\left(1-\frac{k}{n}\right)\right) \cdot \frac{1}{n} \\
& \mathbb{P}\left(Y_{k} \neq y_{01},-y_{n-1}\right) \mathbb{P}\left(\left(y_{m+t-1}\right)=y_{m}\right) \\
& \sum_{k=1}^{m+t-1} \log \left(1-\frac{k}{n}\right) \approx-\sum_{n} \frac{k}{n} \approx-\frac{(m+t)^{2}}{2 n} \\
& \Rightarrow \mathbb{P}\left(M=m_{1} T=t\right) \approx e^{-(m+t)^{2} / 2_{n}} \cdot \frac{1}{n} .
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \mathbb{E}(M+T) & =\sum_{m, t} \mathbb{P}(M=m, T=t) \cdot(m+t) \\
& \approx \sum_{n, t} e^{-(m+t)^{2} / 2 n} \cdot(m+t) \cdot \frac{1}{n} \\
& \approx \int_{n}^{\infty} \int_{1}^{\infty} e^{-(m+t)^{2} / 2 n} \cdot(m+t) \cdot \frac{1}{n} d m d t \\
& \approx \int_{0}^{\infty} \int_{0}^{\infty} e^{-(a+b)^{2 / 2}}(a+b) \cdot \sqrt{n} d a d b \\
m & =a \sqrt{n} \underbrace{n}(0, \infty) \\
t & =b \sqrt{n} \\
& \sim \sqrt{n} .
\end{aligned}
$$

Ihm 15.12 Let $n=p_{1}^{e_{1}} \ldots p_{k}^{e_{n}}\left(w i t_{h} p_{1}^{e_{1}} \ldots\left(p_{n}^{e_{n}}\right), k \geqslant 2\right.$. Assume f_{1}, \ldots, f_{k} are (independent) uniformly random functions, $f_{i}: \mathbb{Z} / p_{i} e_{i} \rightarrow \mathbb{Z} / p_{i}^{e} \mathbb{Z}$. They give rise to a function $f: \mathbb{Z} / \cup \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$. Assuming we can evaluate f in $\theta(1)$, the following alg. returns a divisor $1<d \leq_{n}$ of n in esepected time $\tau\left(\sqrt{e_{1}} \log n\right)$. With probability $>\varepsilon$, we have $d<n$. (Jor some corstout $\varepsilon>0$.)

Hg Let $a=f(0 \bmod x), b=f(a)$.
For $j=1,2, \ldots:$
(Now, $\left.a=f^{j}(0), b=f^{2 j}(0).\right)$
If $d=\operatorname{gcd}(a-b, n)>1$, return d.
Let $a \leftarrow f(a), \quad b \leftarrow f^{2}(b)$.
Pl
Let m_{i}, ti be the preperiod and period of Ofor the function f_{i}. We have $p_{i}^{e_{i}} \mid f^{j}(0)-f^{2 j}(0)$ if and only if $t_{i} \mid j$ and $j \geqslant m$.
\Rightarrow The number of steps taken by the alg. is at most the smallest multiple of t_{1} which $\geqslant m_{1}$, which is $\leq t_{1}+m_{1}$, which on average is $\theta\left(\sqrt{p_{1}} 1\right)$.
The prob. that the smallest $j \Delta A . t_{i} l j$ and $j \geqslant m_{i}$ is the same number for all i is $<1-\varepsilon$ for some constant $\varepsilon>0$.
Bump Use don 'A blow how to generate a random function f as in the She.
Instead, usuallythe following heuristic is used: False $f(x)=x^{2}+c$ for a random (fiseed) number $c \in \mathbb{Z} / n \mathbb{Z}$.
15.2. Diseon's random squares method Preferencer-ehepter 19.5 in Reminder.
 int ego.
 $1<\operatorname{ged}(a,-1, n)<n$ with probability $1-\frac{1}{2^{k-1}} \geqslant \frac{1}{2}$.

Pf There re eseactly 2 bad a :

$$
\begin{aligned}
a=1 & : g e d=n \\
a=-1 & : g e d=1
\end{aligned}
$$

Lout to construct $a z$-torsion element:
Find $a, b \in(\mathbb{Z} / 4 Z)^{x}$ with $a^{2} \equiv b^{2} \bmod u$. Then, $\frac{a}{b} \in(\mathbb{Z} / u Z)^{\times}[2]$.
Bub Birthday paradose : need to choose random elementrai $\in(z / u z)^{x}$ until finding two with the same square.

Idea Fry to find numbers $a_{n}, \ldots, a_{r} \operatorname{modn} s . t$.

$$
\underbrace{\left(a_{1}^{2} \bmod n\right)}_{\in\left\{1_{1}, 1, n\right.} \cdots \underbrace{\left(a_{r}^{2} \bmod n\right)}_{\in\{1, \cdots n\}}=b^{2} \text { for an integer } b .
$$

This is equivalent to the condition that the LHS is divisible by every prime q an even number of times.
We'll only a_{i} such that $\left(a_{i}^{2} \operatorname{modn}\right) \in\left\{1_{1} \ldots, n\right\}$ has only prime factors $q<B$.

Lemma 15.2.2 Let $n=p_{1}^{e} \wedge \cdots p_{k}^{e_{u}}$ odd, $k \geqslant 2$.
Let $p_{1}<\ldots<p_{r}$ be ${ }^{\text {rall) }}$ primes numbers \quad not dividing $\left.n\right]$. The following alg. returns the st a uniformly random element of $(2 / n 2)+[2]$.
$A \lg (15.2 .2)$

1) Find uniformly random elements $b_{11, \ldots,} b_{r+1} \in(2 / n 2)^{x}$ subjoin to the condition.
that $\frac{\text { each }}{}\left(b_{i}^{2} \bmod n\right)$
cam bevoritten as $\left(b_{i}^{2} \bmod u\right)=q_{1}^{f_{i 1}} \cdots q_{r}^{f_{i r}}:$
Just pick random $b \in(e / n a)^{x}$, compute $b^{2} \operatorname{modn}$, find the number of tines this integer is divisible by each q; by trial division, until you've found $r+1$ goo residue classes b_{i}. [Ihisterminates because $b=1$ is pracible]
2) Using Gaussian elimination, find the kernel of tho mar $\mathbb{F}_{z}^{r+n} \rightarrow \mathbb{F}_{2}^{r}$

$$
\left(v_{i}\right)_{i=1, r+1} \mapsto\left(\sum_{i} v_{i} f_{i j}\right)_{j=1, \ldots, r}
$$

3) Rich a uniformly random nowsero element $v=\left(v_{i}\right)_{i}=F_{2}^{r+1}$ of the hemal. Let $S_{H}=\left\{i \mid v_{i}=1\right\} \subseteq\{1, \ldots, r+1\}$.

$$
\left(\Rightarrow E v_{i 1} f_{i j} \equiv 0 \bmod z \text { for all. }\right)
$$

$$
\sum_{i \in S} f_{i j}
$$

4) Let $t_{j}=\frac{1}{2} \sum_{i \in S} f_{i j}$.

$$
\left.\Leftrightarrow \prod_{i \in S}\left(b_{i}^{2} \bmod u\right)=\prod_{i \in S} \prod_{i} q_{i j}=\prod_{j} q_{j}^{2 t_{j}}=\left(\prod_{j} q_{j}^{t_{j}}\right)^{2} .\right)
$$

5) Return $x:=\frac{\prod_{i \in s} b_{i}}{\prod_{j} a_{i}} \bmod n$.

If The result c is an el of $(a / n 2)^{x}[2]$ because

$$
\left(\prod_{i \in S} b_{i}\right)^{2} \equiv\binom{\prod_{j}}{t_{j}}^{2} \quad \bmod n .
$$

weill show that for any fixed of $5 \neq \varnothing$, all elements of (xu) ${ }^{*}$. are equally coly, Fife any $i_{0} \in S$.
Iisothe set S and wy io $\in S$ and, the value
$d=\left(b_{i o}^{2} \bmod u\right)$. The so fie all b_{j} with' $\neq i_{0}$.

All apure roots of d mod n ares equally likely to be the value of b_{10}

$$
\Rightarrow \text { elements of }([/ n\rangle) \times[z]
$$ probability.

We'll show that c is a uniformly random element of $(2 / n \mathbb{Z})^{\times}[2]$ ever for
particular fixed values $d_{i}=\left(b_{i}^{2} \bmod n\right)$.
Note that, S only depends on these values (and randomness the set
not an the square roots b_{i} of d_{i}.
Ihebi are uniformly random square roots of the d_{i}.
$\Rightarrow \prod_{i \in S} b_{i}$ is a uniformly distributed random square root of $\prod_{i e s} d_{i}$ (even if we pick $i_{0} \in S$ and fie all b; with $i \neq i_{0}$).

Bumble te could have chosen v (and therefore S) deterministically, as long as the choice only depends on d_{1}, \ldots, d_{r+1}, not on $b_{11},-b_{r+1}$.

Question war what fraction of elements $b \in(u z)^{x}$ can $\left(b^{2} \bmod n\right)$ be written so $q_{1}^{f_{1}} \cdots q_{r}^{f_{r}}$?
J.e. how long does ster 1 take?

Buck Assume $q_{1} c \ldots<q_{r}$ and $q_{r}^{t} \leq n$. Then, $\#\left\{1 \leq 0 \leq n \mid Q=q_{1}^{f_{n}} \ldots q_{r}^{f_{r}}\right.$ fearsome $\left.f_{1}, \ldots, f_{r} \geqslant 0\right\}$

$$
\begin{aligned}
& \geqslant\left\{\left(f_{1, \ldots,}, f_{r}\right) \mid f_{11}, f_{r} \geqslant 0, \quad f_{1}+\ldots+f_{r} \leq t\right\} \\
& =\binom{t+r}{t} \geqslant \frac{r^{t}}{t!} \quad \text { (close to } \frac{n}{t_{1}}
\end{aligned}
$$

Out we need to prove that many of these $1 \leq a \leq$
are quadratic residues modn.
(invertible) Idea (quad. non res. mod $p i)$ (quad. nones) $=$ (quad. Ted
Lemma 15.2.3 $q_{1} c \ldots<q_{r}$ and $q_{r}^{2 t} \leq_{n}$ and that no q_{i} divides n. Then,

with kernel $(\mathrm{c} / \mathrm{u})^{\times 2}$.
For any 9 ertystlet let

$$
U_{g}:=\psi^{-1}(g)
$$

If $a_{1} a_{2} \in U_{9}$, then $\left.\mathcal{F}\left(a_{1}\right)=\psi\left(a_{1}\right) \mathcal{Z}()_{2}\right)=g^{2}=e$, so $a_{1} \in k=\left(\mathbb{U} /(1)^{2}\right.$ is a quadratic residue, with 2^{k} square roots.

$$
\begin{aligned}
& \text { Let }:=\left\{\text { ackelf } a=q_{1}^{f_{1}} \cdots q_{r} \text { fr for some } f_{1}, \cdots, f_{r} \geqslant 0\right\} \text {. } \\
& \text { with } f_{1+\ldots}+f_{r}-A_{t} \\
& (\Rightarrow 1 \leq a \leq \sqrt{u})
\end{aligned}
$$

If $a_{1}, a_{2} \in U_{g} \cap T$, then

$$
a_{1} a_{2} \in W:=\left\{1 \leq a \leq n \left\lvert\, \begin{array}{l}
a=q_{1}^{f} \cdots f_{1}^{f r} \\
f_{1}+\ldots+f_{1}=\sum_{t} \\
a \in(\mathbb{2} / n 2)^{2}
\end{array}\right.\right\} .
$$

seance, we obtain a map

$$
\left.p: \bigsqcup_{g \in \sigma}\left(U_{g \cap} T\right) \times\left(U_{g} \cap T\right) \longrightarrow a_{2}\right) \longrightarrow a_{1} a_{2}
$$

[lrudestimate:]
Any $a=q_{1}^{f_{1}} \ldots q_{r} \in W$ (with $f_{1} f_{\ldots}+f_{r} \leqslant Z t$)
has at most $\binom{2 t}{t}=\frac{(2 t) \text { ! }}{t!^{2}}$ primages (choose which of the it prime factor of a go into an).
\Rightarrow 最

$$
\sum_{g \in 6}\left|U_{g n} T\right|^{2} \leq|w| \cdot \frac{(2 t)!}{t!^{2}}
$$

* (ancoms

$$
\begin{aligned}
& A M-Q M \text { ineg: }\left(\frac{\sum_{\theta \in G}\left|U_{g} \cap T\right|}{|G|}\right)^{2} \frac{\sum_{g \in 6}\left|0_{g} \cap T\right|^{2}}{\mid \sigma 1} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \#\left\{b \in(\mathbb{Z} / \sim \mathbb{C})^{x} \mid\left(b^{2} \operatorname{modu}\right)=q_{1}^{f_{1}} \ldots q_{1}^{f-}-\sim\right\} \\
& \geqslant 2^{k} \cdot|\omega| \geqslant \frac{x^{k} \cdot 1 T R^{2}}{\mid(6) \cdot(2 t)!/ t^{2}}=\binom{t+r-1}{t}^{2} \cdot \frac{t^{2}}{(2 t)!} \\
& \geqslant \frac{t_{r}^{2 t}}{t!^{2}} \cdot \frac{t!^{2}}{(2 t)!}=\frac{r_{r}^{2 t}}{(2 t)!}
\end{aligned}
$$

Preminger
Hg: O) Find all primesq$q_{a}<\ldots<q_{r} \leq B$ (for a member B to be chosen later) u and check that no x_{i} divides u (otherurse, were done)

1) Find good $b_{11}, \cdots, b_{r+1} \in(\mathbb{C} / n \mathbb{Z})^{x}$ sA. $\left(b_{i}^{2} \bmod u\right)=q_{1}^{f_{i n}} \cdots q_{r}^{f_{i r}}$ by trying $b \in \mathbb{P} / n \mathbb{\mathbb { P }}$ at random until finding $r+1$ good ones.
2) Compute the kernel of the $r \times(r+1)$-matres $\left(f_{i j} \bmod 2\right)_{j_{1} i}$ over \mathbb{F}_{2} using Gaussian elimination
3)-5) simple staff...

Oremmingtime: $\operatorname{Let} B=n^{1 / 2 t}$ for to to bechosen optimally later.. $\left(\Rightarrow q_{r}^{2 t} \leqslant n\right)$

$$
\Rightarrow r \cup \frac{B}{\log B}
$$

$s \operatorname{tep} O$ tales time $\tilde{\theta}(B+r \log n) \leq \widehat{\theta}(B \log n)$.

A random $b \in \mathbb{Z} / n \mathbb{Z}$ is good with probability

$$
\geqslant \frac{\frac{r^{2 t}}{(2 t)!}}{n} \geq \frac{\left(\frac{r}{2 t}\right)^{2 t}}{n} \times \frac{\left(\frac{B}{2 t \operatorname{lon})^{2 t}}\right.}{n}=\frac{\frac{n}{(\log n)^{2 t}}}{n}=\frac{1}{(\log n)^{2 t}} \operatorname{ly}
$$

Lemma 15.2.3.
\Rightarrow On average, we need to try $<\left(\log _{n}\right)^{2 t}$ random blt find a good one.
\Rightarrow Need to check $\ll(\log n)^{2 t} \leqslant B(\log n)^{2 t}$ to find $r+1$ good ones.

Checking whether some $b \in \mathbb{Z} / n \mathbb{D}$ is good tales tires

$$
\sigma\left(\left(r+\log _{\uparrow} n\right) \log n\right) \leqslant \tilde{\theta}(\operatorname{Mr} \log n) \leq \tilde{\theta}(B \log n)
$$

divisions

Well choose to that $r \gg \log n$.
\Rightarrow Step 1 tabes time $O\left(B(\log n)^{2 t} \cdot B \log n\right)$

$$
\theta \theta\left(B^{2}(\log n)^{2 t+1}\right) \text { on average. }
$$

Step 2 takes time $\theta\left(\theta\left(r^{3}\right) \subseteq \theta\left(B^{3}\right)\right.$.
steps 3-5 false time $\leq \tilde{O}\left(r^{2} \log \log n\right) \leq \widetilde{\theta}\left(B^{2} \log \log n\right)$.
\Rightarrow Total time $<\tilde{\theta}\left(B^{2}(\log n)^{2 t+1}+B^{3}\right.$

$$
\begin{aligned}
&= \widetilde{\theta}\left(n^{1 / t}(\log n)^{2 t+1}+n^{3 / 2 t}\right) \\
&=\widetilde{\theta}\left(\exp \left((\log n) \cdot \frac{1}{t}+(\log \log n) \cdot(2 t+1)\right)\right. \\
&\left.+\exp \left((\log n) \cdot \frac{3}{2 t}\right)\right)
\end{aligned}
$$

Choose to minimise the first summand:

$$
E_{\pi \wedge} \ni t=\sqrt{\frac{l}{\frac{\log n}{2 \log \log n}}}+v(\Lambda)
$$

~oSotaltime

$$
\begin{aligned}
& \text { Sotaltimin } \\
& \theta\left(\operatorname { e x p } \left((\log n) \cdot \sqrt{\frac{2 \log \log n}{\log n}}+(\log \log n) \cdot\left(2 \sqrt{\frac{\log n}{2 \log \log n}}\right)\right.\right. \\
& \left.\quad+\operatorname{leg}\left((\log n) \cdot \frac{3}{2} \cdot \sqrt{\frac{2 \log \log n}{\log n}}\right)\right) \\
& =\tilde{O}(\operatorname{esp}(2 \sqrt{2} \cdot \sqrt{(\log n)(\log \log n)})) .
\end{aligned}
$$

$\Rightarrow \operatorname{Shm} 15.2,4$ ue cau find a xontrivial divisor of as composite integer n in espected time

$$
\hat{\theta}(\operatorname{esp}(C \sqrt{(\log n)(\log \log n)}))
$$

where $C=2 \sqrt{2}$,
Ormk $\operatorname{esp}\left(C(\log n)^{\delta}\right) \underset{\delta, \varepsilon}{c} n^{\varepsilon} \forall \delta<1, \varepsilon>0$ (subeseponential in logn)

$$
\exp \left(C(\log n)^{\delta}\right) \gg(\log n)^{k} \quad \forall \delta>0, k \geqslant 0
$$

(superpolynomial in $\log n$)

Improvements (finding good (b_{1}^{2} modal))

1) Make stor 1 <super>1faster (cf. HW).
2) Make ster 2 (Gaussian elimination) faster: Since $\left(b_{n}^{2} \bmod _{i}\right)=q_{i}^{f_{i n}} \ldots q_{r}^{f_{i}}$, we have $\sum_{j} f_{i j} \leqslant \theta(\log n)$, which is way smaller than $\Gamma_{\text {. }}$
\Rightarrow The matrices $\left(f_{i j}\right)_{i, j}$ is sparse.
lan find the kernel more quickly using USiodemann's alg
3) Improve the estimate in Lemma 15.2.3.
4) Deviristic improvement:

Instead of using $\left(b^{2} \bmod n\right)$ for arbitrary b, use $\left(b^{2} \bmod n\right)$ for $b=\lceil\sqrt{n}\rceil+c$, where

$$
\begin{aligned}
0 \leq c \ll n^{\varepsilon} . & \Rightarrow b^{2}=\lceil\sqrt{n}\rceil^{2}+2\lceil\sqrt{n}\rceil c+c^{2} \approx n \\
\Rightarrow\left(b^{2} \bmod n\right)= & \left.(\Gamma \sqrt{n}\rceil^{2}-n\right)+2\lceil\sqrt{n}\rceil c+c^{2} \text { (for muff. small e } \\
& \ll n^{\frac{1}{2}+\varepsilon} .
\end{aligned}
$$

A number $<c_{n} \frac{\hat{z}}{}+\varepsilon$ is more libaly only divisible by small primes than arnumber $s n$.
\sim deeuristic running thine $\sigma_{\delta}(\operatorname{eop}((1+s) \sqrt{(\log n)(\log \log n)})) \forall \delta x$
Q Why not simply use $\left(b^{2} \bmod d_{n}\right)=b^{2}$ for $0 \leq b<c_{n} \in$?
A If nothing is actually reduced mod, the aly-olvays returns the trivial result 1 .
useless
Bunk Senstra-Cowerane in 1992 that another alg. \left.\left. has expected run ring time ${\tilde{T_{d}}(\operatorname{lespp}}^{(}(1+\delta) \sqrt{(\log \omega)(\log \log n} 1\right)\right)$ 㚈 That 's the lest proven punning time.

Bat:
Bunk Ihe gereral numberfield sieve has heurista running tume

$$
\theta_{\delta}\left(\operatorname{esp}\left(4\left(c^{5}\right)(\log n)^{1 / 3}(\log \log n)^{2 / 3}\right)\right)
$$

with $C=(64 / 9)^{1 / 3}$.
16. Number fields.
several ways of specifying a field eat. $L / O K$:
a) $L=K[x] / f(x), \quad f(x)<K(x)$

Lis a field if and only if $f(x)$ is irreducible.
L is a product of fields if and sony if $f(x)$ is squarfree.

$$
\begin{aligned}
& {[L: K]=\operatorname{deg}(f)=: n .} \\
& \operatorname{dim}_{u}^{\prime \prime}(L)
\end{aligned}
$$

b) Give the multiplication table:

For a basis $\omega_{1}, \ldots, \omega_{n}$ of L asak-wector space, specifes the numbers $a_{i j k} \in K$ such that

$$
\omega_{1} \omega_{j}=\sum_{k} a_{i j h} \omega_{k} .
$$

With respect to the is basis, thin ult. by w_{i} its given by the matrix $M_{i}=\left(a_{s u}\right)_{u, j}$.

Bael In a), a basis of L $K k$ is $1, x, \ldots, x^{n-1}$, sol. of L corr. to pol. $g(x) \in K[x]$ of degree $<n$.
w.r.t. the basis $1, \ldots, x^{n-1}$, the whf. in the mull. table are given by

$$
\begin{aligned}
&\left(x^{(i-1)+(j-1)}=\bmod f\right)= \sum_{k} a_{i j k} x^{k-1} \\
& \text { only dependson } i+j \\
& \text { If } i-1+j-1<n, \text { then } \quad a_{i j k}= \begin{cases}1, & k-1=i-1+j-1 \\
0, & \text { otherorse. } .\end{cases}
\end{aligned}
$$

16.1. Rings of integers

References: - Cohen, Chapter 6.1

- Pohst, Chapter V

Let $K=\mathbb{R}, L=Q[x] /(t)$ a degree n number field with $f \in \mathbb{C}(x)$ mon r-rducible.
In other words, $L=Q(\alpha)$ for a root α of f.
Q Row to determine the ring of integers θ_{L} ? (i.e.: a basis of θ_{L} as a \mathbb{C}-module).

Rank f monic, $\left.f(a)=0 \Rightarrow \alpha \in \theta_{c} \Rightarrow \mathbb{C} \alpha\right] \subseteq \theta_{L}$
$\mathbb{Z}\left[_{"}\right] \subseteq \theta_{L}$ is an order: a sabing of θ_{L} of finite indue. $\mathbb{Z}+\mathbb{Z} \alpha+\ldots+\mathbb{Z} \alpha^{n-1}$

Sunk

$$
\begin{aligned}
& \operatorname{dise}(z[\alpha])=\operatorname{dise}(t) \\
& \operatorname{dise}\left(\theta_{L}\right)=\operatorname{dise}(L)
\end{aligned}
$$

Omb For angorders $R \subseteq S \subseteq \theta_{L}$, we hove

$$
\operatorname{dise}(R)=\operatorname{dise}(S) \cdot[S: R]^{2}
$$

(In particular, if $\operatorname{dise}(f)^{\epsilon_{i}^{R}}$ squarefree, then $\mathbb{Z} C O=C_{L}$.)

Def Set p bee prime number.
An order $R \subseteq \theta_{L}$ is p-masinnal if there is no $a \in \theta_{L}$ such that $a \notin R$ but $p a \in R$.
Lemma 16.1.1 R is p-mace. if and only if $p+\left[\theta_{L}: R\right]$.
Pf O_{L} / R is a finite abelian group of order $\left[\theta_{L}: R\right]$.
Hecontin an element $(a \bmod R)$ of order p if and only if $p \mid\left[\theta_{L}: R\right]$.
Ounce In particular, R is p-masimal for all p with $P^{2} \nmid \operatorname{dis}(R)$.

Cor 16.1.2 We have $R=\theta_{L}$ (R is massinal) if and only if R is p-maseimal for all p.

Pouf, $C Q / R$ is a finite palvelian group of orderfle

Ese Let $t \in \mathbb{Z}$ le not a square.
$\Rightarrow f(x)=x^{2}-t$ is irreducible, $L=Q(x) / f=Q(\sqrt{t})$.

$$
\begin{aligned}
& \text { w.l.o.s. } \alpha=\sqrt{t} \text {. } \\
& \operatorname{disec}^{\prime \prime}(f)=4 t \\
& \operatorname{dixe}^{\prime \prime}(\mathbb{E}[\alpha])
\end{aligned}
$$

a) Let $p \neq 2$. Then, $\left.\mathbb{T} C_{\alpha}\right]$ is p-maximal of $p^{2}+t=$ If $p^{2} \mid t$, then $\frac{\alpha}{p} \in \theta_{L}$ (with min. pol. $x^{2}-\frac{t}{p^{2}}$),

$$
p \cdot \frac{\alpha}{p} \in \mathbb{Z}[\alpha], \quad \frac{\alpha}{p} \notin \mathbb{Z}[\alpha] .
$$

b) $E(\alpha)$ is z-mascimal iff $t \equiv 2,3 \bmod 4:$

If $t \equiv 0 \bmod 4$, then $\frac{\alpha}{2} \in \theta_{L}$ like before.
If $t \equiv 1 \bmod 4$, then $\frac{1+\alpha}{2} \in \theta_{L}$ (with min pol. $x^{2}-x-\frac{t-1}{4} \in \mathbb{Z}(x)$),

It $t \equiv 2,3 \bmod 4$, then the min. pol. of $\frac{r+s \alpha}{2}$ with $r_{1} s \epsilon_{i}$ is $x^{2}-r x-\frac{s^{2} t-r^{2}}{4}$, which only lies in $e(x)$ if r, s

$$
\left(x-\frac{r}{2}\right)^{2}-\frac{s^{2} t}{4}
$$ are both even.

Then, $\frac{r+s \alpha}{2} \in \mathbb{C}[\alpha]$.

Bunk The method used in the esearple in principle works for any number field (and can even bo used to compute tho ring of integer).
$\mathscr{Z}(\infty]$ so p-mace. if and only if the min. pol. of $v:=\frac{1}{p}\left(r_{0}+r_{1} \alpha+\ldots+r_{n-1} \alpha^{n-1}\right)$ with $r_{0, \ldots,} r_{n-1} \in \mathbb{Z}$
has integer coefficient only when $r_{0, \cdots}, r_{n-1}$ are all divisible by p-
Note: Since $a[\alpha] \leqslant O_{L}$, whether $v \in O_{L}$ only depends on the values $r_{i} \bmod p$, so it suffices to check p^{n} tuples $\left(r_{0}, \ldots, r_{n-1}\right) \in \mathbb{F}_{p}^{n}$.
(\sim exponential running time in both n and $\log p$).

Better approach:
Def The radical of an ideal I of a $\operatorname{ring} R$ is the ideal $\operatorname{rad}(I):=\left\{r \in R \mid r^{k} \in I\right.$ for some $\left.k \geq 1\right\}$.

Bunk $I \subseteq \operatorname{rad}(I) \subseteq R$.
Punk If R is noetherian then $\operatorname{rad}(I)^{m} \subseteq I$ for some $m \geqslant 1$.
Ese $\operatorname{rad}(\underbrace{p_{1}^{e_{1}} \cdots p_{u}^{e_{u}} \mathbb{Z}}_{S_{\mathbb{Z}}})=p_{1} \cdots p_{k} \mathbb{Z}$.
Lemma 16.1.3 Let R be an order in a numberfield of degree.
IRen, $J_{p}(R):=\operatorname{rad}(p R)=\left\{r \in R \mid r^{u} \in p R\right\}$ for any $u \geq n$.
ER" 2 " clear
" $\underline{"}^{\prime}$ As a e-module, $R \cong \mathbb{Z}^{n}$.
$\Rightarrow R / P R$ is an n-dimensional F_{P}-vector apace. Let $r \in J_{P}(R), \Rightarrow r^{k} \in R$ for some $k \geq 1$.
\Rightarrow The mult, by r map $m_{r}: R / P R \rightarrow R / P R$ is nilpotent.
\Rightarrow Its n-th power is the zero map.

$$
\begin{aligned}
& \Rightarrow r^{n} \in p R \\
& \Rightarrow r^{v} \in P R \quad \forall v \geqslant n .
\end{aligned}
$$

Sunk $R / P_{R} \rightarrow R / P_{s} \rightarrow$ is an \mathbb{F}_{P}-linear map for all $s \geqslant 0$. If $P^{s} \geqslant \theta^{n}$, then $J_{P}(R) / P R$ is the hemal of this mar according to the Lemma.
rene, we can efficiently compute $J_{p}(R)$.

Lemma 16.2 .4 Let $J_{p}(R)=\operatorname{rad}(P R)$ as before and let $T_{p}(R):=\left\{x \in L \mid x J_{p}(R) \subseteq J_{p}(R)\right\}$. Then,
a)
$T_{p}(R)$ is an order in θ_{L}.
b) $R \subseteq T_{p}(R) \subseteq \frac{1}{p} \cdot R$
c) $R=T_{p}(R)$ if and only if R is p maximal.
as
b) $R \subseteq T_{p}(R)$ is clear because $J_{p}(R)$ is an ideal of R.

If $x \in T_{p}(R)$, then $x p \in J_{p}(R) \subseteq R$ because $p \in J_{p}(R)$.

$$
\Rightarrow T_{p}(R) \subseteq \frac{1}{p} \cdot R
$$

a) Since $R \subseteq T_{p}(R)$ is av order, it suffices to show that $T_{P}(R) \subseteq \theta_{L}$. Let $x \in T_{p}(R)$.
R is a free \mathbb{Z}-module of rank n.
\Rightarrow so is it ideal $J_{p}(R)$ (a sulpuodule of finite indre).
The frultiplication by \times mar $m_{x} I_{p}(R) \rightarrow J_{p}(R)$ is
represented by an integral $n \times n$-matrix.
The pate Its char. pol. $g(x)$ is a manic inter poe.
of deg. u and $g\left(n_{x}\right)=0 . \quad \Rightarrow g(x)=0$.
$\Rightarrow \times$ is integral $\Rightarrow x \in \theta_{L}$.
c) "E "clear from def.
" \Rightarrow " Consider the p-maximal order

$$
\begin{aligned}
& R_{p}=\left\{x \in \theta_{L} \mid p^{k} x \in R \text { for same } k \geqslant 0\right\} . \\
& \left(R \subseteq R_{p} \subseteq \theta_{L}\right) .
\end{aligned}
$$

Since R is afinitely generated Z-module, there is a number $k \geqslant 0$ such that $p^{k} \cdot R_{p} \subseteq R$.
Also, pice $m \geqslant 1$ so that $\underbrace{J_{P}(R)^{m}}_{\operatorname{rad}(p R)} \subseteq p R$.

$$
\Rightarrow R_{p} \cdot J_{p}(R)^{k m} \subseteq R_{p} \cdot p^{k} R \subseteq R
$$

assume that R is not p-maximal.
$\Rightarrow R_{p}$ 丰 R, so in part. $R_{p} \notin R$.
\Rightarrow There is a largest integer $i \geqslant 0 \quad($ with $i<\mathrm{km})$ such that $R_{p} \cdot J_{p}(R)^{i} \neq R$.

$$
\begin{aligned}
& \Rightarrow R_{p} \cdot J_{p}(R)^{i+1} \subseteq R \\
& \text { Let } x \in R_{p} \cdot J_{p}(R)^{i}, \operatorname{but} x \notin R . \\
& \Rightarrow x J_{p}(R) \subseteq R_{p} J_{p}(R)^{i+1} \subseteq R
\end{aligned}
$$

For any $y \in J_{p}(R)$, we have

$$
\begin{aligned}
& (x y)^{i+m+1}=\underbrace{\underbrace{x^{i+m+1}}_{\in R_{p}} \cdot \underbrace{y^{i+1}}_{\in J_{p}(R)^{i+1}} \cdot \underbrace{y^{m}}_{\substack{\in J_{p}\left(R^{m} \\
y_{p}\right.}} \in p R,}_{\in R} \\
& \text { so } x y \in \operatorname{rad}(p R) \Rightarrow J_{p}(R) \text {. }
\end{aligned}
$$

sPence, $x \in T_{p}(R)$. But $x \notin R$, so indeed $R \neq T_{p}(R)$.

Amble This gives a procedure for compaction the ring of intoges: Start with $R=\mathbb{Z}[\alpha]$.
For every p with $p^{2} / \operatorname{disc}(f)=$
Sheep replacing R by $T_{P A}(R)$ until it stops changing.
Qreturn R.
Note: If $R \nsubseteq T_{p}(R)_{F}\left(\subseteq \frac{1}{p} \cdot R\right)$, then $p\left(\left[T_{p}(R): R\right]\right.$.
\Rightarrow disc (R) always decreases by a factor of at least $\frac{1}{p^{2}}$.
See the references for details!
16.2. Decomposition of prime numbers
[For almost all primes, we can use the following:]
Inn 16.2.1 ${ }^{(\approx \text { lemma }}$ K.1) Kb a number field $\operatorname{stg}_{v} \alpha \in O_{L}$ with minimal polynomial $f(x)$ of degree.

Assume that $\mathbb{P}[\alpha]$ is p-maximal.
Let $f(x) \equiv g_{1}(x)^{e_{1}} \cdots g_{t}(x)^{e_{t}} \bmod p$ be the poctarisation of f me (with $g_{i}(x) \in \mathbb{E}[x]$ manic)
Then,

$$
p \theta_{k}^{\prime}=R_{1}^{e_{n}} \ldots p_{t}^{e_{t}}
$$

with prime ideals $f_{i}=\left(p, g_{i}(\alpha)\right)=p \theta_{k}+g_{i}(\alpha) \theta_{k p}$

$$
\left[\theta_{u} / f_{i}: \mathbb{Z} / p\right]=\operatorname{deg}\left(g_{i}\right) .
$$

Probe dngideal $a C_{k}$ is a free \mathbb{Z}-module of rank ($\approx a$ rank n lattice). It can therefore be specified by giving anabasis vectors, each of which can be written as a lin. comb. of a fixed basis $\omega_{n}, \ldots, \omega_{n}$ of θ_{c}
\rightarrow ute can represent an ideal by an integer $n \times n$-matrise', which we can put in Deermitenormal form $M^{\left(H N^{F}\right)}$ by changing the basis of or
we have $\operatorname{Nm}(I)=|\operatorname{det}(M)|$.
Using HNF, we can also Rind a basis of the \mathbb{Z}-module spanned by any number of elements $\beta_{11} \ldots \beta_{m}$ of θ_{k}. This allows us to add/muttyly ideals.
Fractional ideals work the same but with rational coefficients Dividing two (fractional) ideals is also not hard ("just linear algebra"). (ef.chapters 4.6-4.8 of Cohen)

Alg to find the decomposition $p \theta_{k}=p_{1}^{e_{n}} \cdots p_{t}^{e_{t}}$ for arbitrary p : Compute or: $\quad J_{p}\left(v_{u}\right)=\operatorname{rad}\left(p \theta_{k}\right)=q_{1} \cdots p_{t}$.

It then suffices to factor the squarefree ideal oc $\mid p \theta_{k}$ and determine the eseponents by trial division.
 Berlebaw 'A algorithm problem on plat 5):
Note that $\theta_{k} / o r \underset{\substack{<\\ C R T}}{\cong} \theta_{i=1} / \xi_{i}$,
where $\theta_{u} / y_{i}=\mathbb{F}_{p} f_{i}$ is a \lim est. of \mathbb{F}_{p}.
The map $\theta_{u} / \sigma_{x} \stackrel{\pi F_{p}^{8 i}}{\rightarrow} \theta_{c} \sigma_{x} \cong \Pi \mathbb{F}_{p}^{f i}$ is \mathbb{F}_{p}-linear.

$$
x \mapsto x^{p}
$$

Compute $V=\left\{x \in Q_{u}\right.$ or $\left.\mid x^{P}=x\right\}$ using linear algebra over \mathbb{F}_{P}, we have $V \cong \prod_{i=1}^{t} \mathbb{F}_{P}$, so in part., $\operatorname{dim}_{\mathbb{F}_{P}}(V)=t$.
If $t=1$:
Rich a random $x \in V$ and
compute $y:=u_{P}(x) \in V$.

$$
\left(x^{(s-1) / 2}-1\right. \text { if pioodd) }
$$

The projections porto the factors F_{p} are independent别 and each $\underbrace{\text { projection is } 0}_{\|}$with prob. $\approx \frac{1}{2}$.
use obtain a splitting or $=0 r_{1}, r_{2}$ and recursively factor or $1, o_{2}$.

Punk This is not the fastest alg. to decompose p !
Punk The factorization of $f^{\prime \prime}$, over Up looks like the decomposition of $p \theta_{u}$ in $K=Q[x] /(f)$.
16.3. Ideal class group

Def The Riemann zeta function is given by

$$
f(s)=\sum_{n \geqslant 1} n^{-s}\left(=\prod_{p} \frac{1}{1-p^{-s}}\right) \quad \text { for } s \in \mathbb{C} \text { with Re }(s)>1 \text {. }
$$

Def The Dedebind zeta function of a number field k. is given by

$$
\begin{aligned}
\rho_{k}(s)=\sum_{\substack{0 \sim c \theta_{k} \\
\text { ideal given by }}} N_{m}(o r)^{-s}= & \prod_{\substack{\mathcal{q}^{c} \theta_{k} \\
\text { Time } \\
\text { idol }}} \frac{1}{1-N_{m}(p)^{-s}} \\
& \text { for } s \in \mathbb{C} \text { with Refs) }>1 .
\end{aligned}
$$

$\operatorname{Eg}_{\Omega} \rho_{Q}=\zeta$.

Thm16.3.1 (Class number formula)

$$
\lim _{s \rightarrow 1^{-}}(s-1) s_{k}(s)=\frac{2^{r_{1}}(2 \pi) r_{2} R_{k}\left|e l_{k}\right|}{\omega_{k} \cdot \sqrt{\left|D_{k}\right|}}
$$

if U has r_{1} real embeddings, r_{2} pairs of complese embeddings,
regulator R_{k}, class group e_{u}, root of unity $\omega_{k} \subset \theta_{k}$个 (Etesian sulyrap),
"howfaraport
the units are"
discriminant D_{k}.
Ese $\lim _{s \rightarrow 1}(s-1) s(s)=1$
Bulk $\angle H S=\lim _{s \rightarrow 1} \frac{J_{n}(s)}{s(s)}$.
Punk $R_{k},\left|e e_{k}\right|$ often show up together and can be hard to separate!

Thu 16.3.2 (sraver-siegal Shim)
For fixed $n=[k: Q]$, and any $\varepsilon>0$,

$$
\begin{aligned}
\left|D_{u}\right|^{\frac{1}{2}-\varepsilon} \quad & <R_{k}\left|\ell \ell_{k}\right| \ll\left|D_{u}\right|^{\frac{1}{2}+\varepsilon} . \\
& \left(\frac{\left.\log \left(R_{k} \mid \ell \ell_{u}\right)\right)}{\log \left(\sqrt{\left|D_{u}\right|}\right)} \rightarrow 1 .\right)
\end{aligned}
$$

We will focus on imaginary quadratic number fields.
(Deafer, Mclurlyy A rigorous subespranation alg. for computation of class group
(For general number fields k_{1} see
\%erecBuchmarn: A subesp. as. for the determination of class groups and regulators of ald. nr. fiods)?

Quark $r_{1}=0, r_{2}=1, \theta_{k}^{x}=\mu_{u}$,

$$
\begin{aligned}
& R_{k}=\Lambda, \\
& \omega_{k}=\left|\mu_{k}\right|= \begin{cases}2, & k=0 \text { otherwise } \\
4, & k=Q(i) \\
6, & k=Q\left(s_{3}\right)\end{cases} \\
& K=Q\left(\sqrt{D_{u}}\right), \quad D_{k}<0 .
\end{aligned}
$$

(Nonstandard)
Def A fractional ideal or is reduced if $1 \in \sigma$ but there is no ${ }_{0} x \in$ with $\mu_{m}(x)<1$.
\mid compl.emb. $(x) \mid$

Publ $1 \in \sigma \Leftrightarrow \theta_{k} \subseteq o r \Leftrightarrow \sigma^{-1} \subseteq \theta_{k}$,
(1)
so the inverse of a reduced fractional ideal is an (integral) ideal of θ_{u}.
Lemma 16.3.3 Any ideal class contains at least 1, at most 6 P\& Let b be any fractional ideal
and lat $y \in b$ be a norsero element of minimal norm. Then, or :y y^{-1}.b is reduced. Any reduced ideal in the ideal class $[\theta]$ is osteitis form. There are at most 6 such y.

Bunk
We can efficiently determine thbereduced ideal using tau's lattice reduction for find the shorter noises vector seance, we can effisiontay determine whether tiv ideals lie in the same ideal las
Th 16.3 .4 (Mishouski bound)
If $O C$ is reduced, then $\operatorname{Mm}\left(\sigma^{-1}\right) \leq O\left(\sqrt{\left|D_{u}\right|}\right)$.
Oh I his gives rise to a slow alg, to determine $e l_{k}$:
Find all ideals by with $\operatorname{Mm}\left(b_{0}\right) \leq \theta\left(\sqrt{10_{a}}\right)$.
Foreach, compute the reduced ideals in the same ideal class as b^{-1} to determine which b are in the same class.

Sum 16.3.5 Assume the Esoterded Then, $l l_{k}$ is generated by the (ideal classes of) primes ideals if of norm $12 m(g) \leqslant 6\left(\log \left|D_{k}\right|\right)^{2}$.

Puls Pence, if if $1, \ldots$, Ar are the prime ideals of worm $\leq B$ with $B \geq 6\left(\log \left|D_{u}\right|\right)^{2}$, then we get a surgitive group hoo

$$
\begin{aligned}
\varphi: & \mathbb{Q}^{r} \longrightarrow e l_{k} \\
& \left(a_{11} \ldots, a_{r}\right) \mapsto\left[1 f_{1}^{a_{1}} \ldots f_{r}^{a_{r}}\right]
\end{aligned}
$$

Io determine l_{K}, we need to find its kernel:

$$
l_{u} \cong \mathbb{Z}^{r} / \operatorname{ker}(\varphi)
$$

J.e.: Need to find elements generating the rank lattice berle

Idea: Find random elements until they generate $\operatorname{lner}(\varphi)$.
alow to tell when we're finished?
Let $\Lambda \subset$ her (φ), the lattice generated by the elements discover so far.

If $\Lambda \neq \operatorname{ker}(\varphi)$, then $[\operatorname{ker}(\varphi): \Lambda] \geqslant 2$, so

$$
\left|\mathbb{Z}^{r^{r}} / \Lambda\right| \geqslant 2 \cdot \mid \mathbb{Z}^{r^{r}} / \text { her }(\varphi)|=2|-e_{k} \mid .
$$

seance, it suffices to know within a factor of 2 , which (assuming C HR H) can be competed using the class number formula.

Lew to Rind random elements of her (φ) ?
Quick a random vector $a=\left(a_{1}, \ldots, a_{p}\right) \in \mathbb{Z}$.

(very small
[This only lies in her (φ) with prob. $\approx \frac{1}{\# l l_{k}}$
Rational
Compute a reduced ideal or in the ideal class $\left[{f_{1}}_{a_{n}}^{\cdots} \cdot p_{r}^{a_{r}}\right]=\left[q_{n}\right]_{n}^{a_{n}} \cdots\left[p_{r}^{a_{r}}\right]$ using fast exponentiation, reducing at every stop to ensure that we only need to works with ideals of norm $\leq\left|D_{u}\right|$ at any time.
If $\sigma^{-1}=f_{1}^{b_{1}} \cdots f_{r}^{b_{r}}$ with integers $b_{11}, \ldots, b_{r} \geq 0$, then $\left[\begin{array}{ccc}q_{1}^{a_{1}} \cdots p_{r}^{a_{r}} & \left.f_{1}^{b_{1}} \cdots q_{r}^{b_{r}}\right]\end{array}\right]=\left[\operatorname{cor}^{-1}\right]=[1]$, so $a+b=\left(a_{1}+b_{1 i} \ldots a_{\mu}+b_{r}\right) \in \operatorname{lser}(\varphi)$. (Note that $b_{1}, \ldots, b_{r} \leqslant \theta\left(\log \left|D_{m}\right|\right)$
because $\left.\operatorname{\mu m}\left(\sigma^{-1}\right) \leqslant \theta\left(\sqrt{D_{x} \mid}\right).\right)$
Otherwise, try, random vector $a \in \mathbb{Z}$.
again, with a new
(uniformly)
We pick the first rectors a from

$$
\begin{align*}
& \text { idk-the first rector a from } \\
& (2 r|D|, 0, \ldots, 0)+\underbrace{\mathbb{B}(D)}_{\left\{x \in e^{r}\right.}, \\
& \left(0,2 r^{(D)}, \ldots, 0\right)+B(D),
\end{align*}
$$

$$
(0, \ldots, 0,2 r|0|)+B(D)
$$

so the first r elements of her (φ) we construct prapec.al random
lattice $\Lambda \subset \mathbb{T}^{r}$ of covolume $\leq \theta\left((\mathbb{C} \mid)^{r}\right)$.
ranks and
Afterwards, we pick vectors a from $B\left(|D|^{2}\right)$ untie $\left|\mathbb{Z}^{r} / \Lambda\right|$ is small enough.
Analysing the expected turning time and choosing P optimally, we get:
Thin 163.6 (xobiselung) Assuming GRH, we can determine $l_{l_{*}}$ in eserected time $\tilde{\sigma}\left(\exp \left(\sqrt{2} \cdot \sqrt{\log \mid D_{4} \log \log \left(D_{4} \mid\right.}\right)\right)$.
\square 4 improved...

