THE SCHONHAGE-STRASSEN ALGORITHM FOR MULTIPLYING
POLYNOMIALS

FABIAN GUNDLACH

Lemma 1. For n = 1, if f and g are polynomials of degree < m with g # 0, and there are at most
1 < m < n monomials in g(X), then we can compute f mod g in time O(nm) on an O(logn)-bit RAM.

Proof. Use schoolbook division. Each time we eliminate the leading coefficient, we only need to modify
m coefficients. We eliminate the leading coefficient at most n times. ([l

We let ¢, be the n-th cyclotomic polynomial. Its degree is ¢(n) = #(Z/nZ)*. Note that for any prime
r>2and any k > 1, we have o(rF) = (1 — 1/r)r* and the cyclotomic polynomial ¢« (X) = ¢, (X" ") =
Z;;()l X" has exactly 7 monomials.

We saw in class that Fourier transforms in [[,, ek, R allow us to quickly compute products of elements

of R[X]/(X g 1). Between Fourier transforms, the algorithm involved multiplying two elements of
[Licz ek, R, i.e. 7* multiplications in R. It turns out that if we want to multiply elements of the quotient

R[X]/$,4(X) of R[X]/(X™ — 1), only the entries where i is relatively prime to r¥ matter. (This makes
sense because ¢.a(X) = [[;c(z/rrz)x (X — k), so the ring C[X]/¢,.a(X) captures only the values of a
polynomial at C};k with i € (Z/r*Z)*.) We then only need to perform ¢(r*) multiplications in R and this
optimization will be crucial in the proof of Lemma [3] below.

Lemma 2. Assume that R contains a root (.. of ¢,r. For k =1, given any (reduced) elements f and g
of R[X]/¢,x(X), we can compute 7% - fg € R[X]/¢,x(X) in time O.(r* - k) on an O(k)-bit RAM. The
arithmetic operations in R used are: O, (r*-k) additions in R, O,(r* - k) multiplications by powers of .,
exactly o(r*) further multiplications of two (arbitrary) elements of R.

ky_ . ky_ .
Proof. Write f(X) = fz(g) laiX’ and g(X) = f:(g)—1 b;X?andlet a; = b; = 0 fori = @(r¥),...,rF—1.
Let a = (a;)iez/rkz and b = (bi)iez)rrz-
Use the Cooley-Tukey algorithm to compute the Fourier transforms a and b of a and b.
a;-bj, je(Z/rkz)>
For j € Z/r*Z, compute ¢; = G- by, J el /r)"
0, otherwise.

Then, use the Cooley-Tukey algorithm to compute the Fourier transform ¢ of ¢.
We leave it as an exercise to show that Z:ial c; X' mod ¢,1(X) =7F - f(X)g(X). O

Lemma 3. Let r = 2 or 3. For k = 1, given any (reduced) elements f and g of R[X]/d.x(X), we can
compute ' - fg in time O(r* - k -log(k + 1)) on an O(k)-bit RAM, for some w = wy;, = O(k).

Proof. For small k, use schoolbook multiplication and reduce the result modulo ¢, .

For large k, proceed recursively as follows: Assume we can multiply for &' < k in time T'(k').

Let
k+2 ifr=2,
/U:
k+1 ifr=3,

and let m = |v/2| and | = v — m = [v/2]. If k¥’ is sufficiently large, then k/2 < m <1 < k.
1

2 FABIAN GUNDLACH

We will consider the following rings:
S = R[Y]/$.(Y),
U = 5[Z]/¢rm(Z) = R[Y, 21/ (6,1 (Y), $rm (Z)).

Note that S contains a root [Y] of ¢,.. Since m < [, it also contains a root [YTH"] of (;m, so we can
use Lemma 2 to multiply elements F, G of U (or rather, compute some power of r times F'G). Any such

multiplication involves O(r™ -m) additions/multiplications by powers of [Y™ "] in S. Each of them takes
time O(p(r!)) < O(r'), so the total is O(r™*! - m) < O(r¥ - k). Moreover, we need to do exactly (™)
multiplications of two elements of S. Since [< k, we can recursively apply the multiplication algorithm
described in this proof. Each such multiplication in S takes time T'(1), so the total is ¢(r™) - T'(I). All in
all, we can multiply two elements of U in time O(r* - k) + o(r™) - T(1).

Now, we describe how to reduce the multiplication in R[X]/¢,+(X) to a single multiplication in U:
Note that ¢(r!) is divisible by 2 and that o(r™)e(r!) = (1 — 1/r)2rm+ = (1 — 1/r)%r® = 2p(rF).

We can therefore (in time O(r*)) write
e(rm)—1 -
JX) = 3 mi(X) X
i=0

with polynomials p;(X) of degree < ¢(r!)/2 and write

p(rm)—1 o
g(X) = Y a(X) XD
i=0
with polynomials ¢;(X) of degree < o(r!)/2.
Consider the elements
p(rm)-1
F(Z)=), ()2
i=0
and
P(rm)—1 '
G2)=), laM1Z
i=0
of the ring U. As described above, compute 7 - F'G for some integer w > 0.
Write
e(rm)—1
e F(Z)-G(Z)=) [ea())]Z

with polynomials e;(Y") of degree < o(r!).

In the variable Y, both sides have degree < ('), so we in fact have an equality

e(rm)—1 A p(rm)—1 A p(rm)—1 A
el Y eWZ DY a2 = D e(N)Z
=0 1=0 =0

in the ring R[Z]/¢,m(Z), not just in U. Next, note that ¢,x(X) = ¢pm (erfm) = ¢pm (XS"(’J)/Q). Hence,
plugging in Y = X and Z = X‘/’(Tl)/z, we obtain

p(rm)-1 o p(rm)—1 - P(rm™)—1 o
s 00900 = (5 pieposer) (5 gonen) 25 peonens
=0 i=0 i=0

Since each polynomial e;(X) has degree < ¢(r!), this addition can be performed in time O(¢(r™)p(r!)) =
o(rk).

REFERENCES 3
To summarize: All steps in the above algorithm take time O(r*), except the ones in the application of
Lemma which take time O(r* - k) + o(r™) - T(1).
The entire algorithm therefore has running time
T(k) < O@" k) +o(r™) - T(1).
We apply induction to show that T(k) < C -7 - (k — 3) - logy(k — 3) for sufficiently large k (and some

constant C). Note that [—3 < “3 —3 < %3 —3 = 1(k — 3). Hence,

T(k) <O@" k) +C-o(r™) v (1—3) - logy(l — 3)
<OGF k) +C ™) 1t %(k:—?)) .1og2%(k—3)
:om.k)+c-2rké(k—3).1og2%(k—3)
=O0" k) +C ¥ (k—3) (logy(k —3) —1).

For sufficiently large k, we have O(r* - k) < O(r* - (k — 3)). As long as C is larger than the constant on
the right-hand side, it follows that indeed

T(k) < C-r* - (k—3)-logy(k —3). O
It’s not difficult to show by induction that the exponent w of r satisfies w = O(k).

Corollary 1. For large n, we can compute the product of two polynomials f,g € R[X] of degree < n in
time O(nlognloglogn).

Proof. Choose the smallest numbers ko, k3 = 0 such that ¢(2%2) > 2n and ¢(3%2) > 2n. Then, 2¥2 = O(n)
and 3% = O(n). As shown above, we can compute 2*2 - f(X)g(X) mod ¢or, (X) and 3%3 - f(X)g(X)
mod ¢ar; (X) in time O(rkr -k, - logk,) = O(nlognloglogn). Since they already reduced modulo the
cyclotomic polynomials, we can in fact compute the polynomials 2*2 - f(X)g(X) and 3" - f(X)g(X).
Writing 1 as a linear combination of 22 and 3“3, we can compute the product f(X)g(X). O

See sections 3 and 4 of [Ber08| for an overview of the history behind this algorithm.

REFERENCES

[Ber08] Daniel J. Bernstein. “Fast multiplication and its applications”. In: Algorithmic number theory:
lattices, number fields, curves and cryptography. Vol. 44. Math. Sci. Res. Inst. Publ. Cambridge
Univ. Press, Cambridge, 2008, pp. 325-384.

	References

