THE SCHÖNHAGE-STRASSEN ALGORITHM FOR MULTIPLYING POLYNOMIALS

FABIAN GUNDLACH

Lemma 1. For $n \geqslant 1$, if f and g are polynomials of degree $<n$ with $g \neq 0$, and there are at most $1 \leqslant m \leqslant n$ monomials in $g(X)$, then we can compute $f \bmod g$ in time $\mathcal{O}(n m)$ on an $\mathcal{O}(\log n)$-bit RAM.

Proof. Use schoolbook division. Each time we eliminate the leading coefficient, we only need to modify m coefficients. We eliminate the leading coefficient at most n times.

We let ϕ_{n} be the n-th cyclotomic polynomial. Its degree is $\varphi(n)=\#(\mathbb{Z} / n \mathbb{Z})^{\times}$. Note that for any prime $r \geqslant 2$ and any $k \geqslant 1$, we have $\varphi\left(r^{k}\right)=(1-1 / r) r^{k}$ and the cyclotomic polynomial $\phi_{r^{k}}(X)=\phi_{r}\left(X^{r^{k-1}}\right)=$ $\sum_{i=0}^{r-1} X^{i r k-1}$ has exactly r monomials.
We saw in class that Fourier transforms in $\prod_{i \in \mathbb{Z} / r^{k} \mathbb{Z}} R$ allow us to quickly compute products of elements of $R[X] /\left(X^{r^{k}}-1\right)$. Between Fourier transforms, the algorithm involved multiplying two elements of $\prod_{i \in \mathbb{Z} / r^{k} \mathbb{Z}} R$, i.e. r^{k} multiplications in R. It turns out that if we want to multiply elements of the quotient $R[X] / \phi_{r^{d}}(X)$ of $R[X] /\left(X^{r^{k}}-1\right)$, only the entries where i is relatively prime to r^{k} matter. (This makes sense because $\phi_{r^{d}}(X)=\prod_{i \in\left(\mathbb{Z} / r^{k} \mathbb{Z}\right) \times}\left(X-\zeta_{r^{k}}^{i}\right)$, so the ring $\mathbb{C}[X] / \phi_{r^{d}}(X)$ captures only the values of a polynomial at $\zeta_{r k}^{i}$ with $i \in\left(\mathbb{Z} / r^{k} \mathbb{Z}\right)^{\times}$.) We then only need to perform $\varphi\left(r^{k}\right)$ multiplications in R and this optimization will be crucial in the proof of Lemma 3 below.

Lemma 2. Assume that R contains a root $\zeta_{r^{k}}$ of $\phi_{r^{k}}$. For $k \geqslant 1$, given any (reduced) elements f and g of $R[X] / \phi_{r^{k}}(X)$, we can compute $r^{k} \cdot f g \in R[X] / \phi_{r^{k}}(X)$ in time $\mathcal{O}_{r}\left(r^{k} \cdot k\right)$ on an $\mathcal{O}(k)$-bit $R A M$. The arithmetic operations in R used are: $\mathcal{O}_{r}\left(r^{k} \cdot k\right)$ additions in $R, \mathcal{O}_{r}\left(r^{k} \cdot k\right)$ multiplications by powers of $\zeta_{r^{k}}$, exactly $\varphi\left(r^{k}\right)$ further multiplications of two (arbitrary) elements of R.

Proof. Write $f(X)=\sum_{i=0}^{\varphi\left(r^{k}\right)-1} a_{i} X^{i}$ and $g(X)=\sum_{i=0}^{\varphi\left(r^{k}\right)-1} b_{i} X^{i}$ and let $a_{i}=b_{i}=0$ for $i=\varphi\left(r^{k}\right), \ldots, r^{k}-1$. Let $a=\left(a_{i}\right)_{i \in \mathbb{Z} / r^{k} \mathbb{Z}}$ and $b=\left(b_{i}\right)_{i \in \mathbb{Z} / r^{k} \mathbb{Z}}$.
Use the Cooley-Tukey algorithm to compute the Fourier transforms \hat{a} and \hat{b} of a and b.
For $j \in \mathbb{Z} / r^{k} \mathbb{Z}$, compute $\hat{c}_{j}= \begin{cases}\widehat{a}_{j} \cdot \hat{b}_{j}, & j \in\left(\mathbb{Z} / r^{k} \mathbb{Z}\right)^{\times}, \\ 0, & \text { otherwise. }\end{cases}$
Then, use the Cooley-Tukey algorithm to compute the Fourier transform c of \hat{c}.
We leave it as an exercise to show that $\sum_{i=0}^{r^{k}-1} c_{i} X^{i} \bmod \phi_{r^{k}}(X)=r^{k} \cdot f(X) g(X)$.
Lemma 3. Let $r=2$ or 3. For $k \geqslant 1$, given any (reduced) elements f and g of $R[X] / \phi_{r^{k}}(X)$, we can compute $r^{w} \cdot f g$ in time $\mathcal{O}\left(r^{k} \cdot k \cdot \log (k+1)\right.$) on an $\mathcal{O}(k)$-bit RAM, for some $w=w_{r, k}=\mathcal{O}(k)$.

Proof. For small k, use schoolbook multiplication and reduce the result modulo $\phi_{r^{k}}$.
For large k, proceed recursively as follows: Assume we can multiply for $k^{\prime}<k$ in time $T\left(k^{\prime}\right)$.
Let

$$
v= \begin{cases}k+2 & \text { if } r=2 \\ k+1 & \text { if } r=3\end{cases}
$$

and let $m=\lfloor v / 2\rfloor$ and $l=v-m=\lceil v / 2\rceil$. If k^{\prime} is sufficiently large, then $k / 2 \leqslant m \leqslant l<k$.

We will consider the following rings:

$$
\begin{gathered}
S=R[Y] / \phi_{r^{l}}(Y) \\
U=S[Z] / \phi_{r^{m}}(Z)=R[Y, Z] /\left(\phi_{r^{l}}(Y), \phi_{r^{m}}(Z)\right) .
\end{gathered}
$$

Note that S contains a root $[Y]$ of $\phi_{r^{l}}$. Since $m \leqslant l$, it also contains a root $\left[Y^{r^{l-m}}\right]$ of $\zeta_{r^{m}}$, so we can use Lemma 2 to multiply elements F, G of U (or rather, compute some power of r times $F G$). Any such multiplication involves $\mathcal{O}\left(r^{m} \cdot m\right)$ additions/multiplications by powers of $\left[Y^{r^{l-m}}\right]$ in S. Each of them takes time $\mathcal{O}\left(\varphi\left(r^{l}\right)\right) \leqslant \mathcal{O}\left(r^{l}\right)$, so the total is $\mathcal{O}\left(r^{m+l} \cdot m\right) \leqslant \mathcal{O}\left(r^{k} \cdot k\right)$. Moreover, we need to do exactly $\varphi\left(r^{m}\right)$ multiplications of two elements of S. Since $l<k$, we can recursively apply the multiplication algorithm described in this proof. Each such multiplication in S takes time $T(l)$, so the total is $\varphi\left(r^{m}\right) \cdot T(l)$. All in all, we can multiply two elements of U in time $\mathcal{O}\left(r^{k} \cdot k\right)+\varphi\left(r^{m}\right) \cdot T(l)$.
Now, we describe how to reduce the multiplication in $R[X] / \phi_{r^{k}}(X)$ to a single multiplication in U :
Note that $\varphi\left(r^{l}\right)$ is divisible by 2 and that $\varphi\left(r^{m}\right) \varphi\left(r^{l}\right)=(1-1 / r)^{2} r^{m+l}=(1-1 / r)^{2} r^{s}=2 \varphi\left(r^{k}\right)$.
We can therefore (in time $\mathcal{O}\left(r^{k}\right)$) write

$$
f(X)=\sum_{i=0}^{\varphi\left(r^{m}\right)-1} p_{i}(X) \cdot X^{i \cdot \varphi\left(r^{l}\right) / 2}
$$

with polynomials $p_{i}(X)$ of degree $<\varphi\left(r^{l}\right) / 2$ and write

$$
g(X)=\sum_{i=0}^{\varphi\left(r^{m}\right)-1} q_{i}(X) \cdot X^{i \cdot \varphi\left(r^{l}\right) / 2}
$$

with polynomials $q_{i}(X)$ of degree $<\varphi\left(r^{l}\right) / 2$.
Consider the elements

$$
F(Z)=\sum_{i=0}^{\varphi\left(r^{m}\right)-1}\left[p_{i}(Y)\right] Z^{i}
$$

and

$$
G(Z)=\sum_{i=0}^{\varphi\left(r^{m}\right)-1}\left[q_{i}(Y)\right] Z^{i}
$$

of the ring U. As described above, compute $r^{w} \cdot F G$ for some integer $w \geqslant 0$.
Write

$$
r^{w} \cdot F(Z) \cdot G(Z)=\sum_{i=0}^{\varphi\left(r^{m}\right)-1}\left[e_{i}(Y)\right] Z^{i}
$$

with polynomials $e_{i}(Y)$ of degree $<\varphi\left(r^{l}\right)$.
In the variable Y, both sides have degree $<\varphi\left(r^{l}\right)$, so we in fact have an equality

$$
r^{w} \cdot\left(\sum_{i=0}^{\varphi\left(r^{m}\right)-1} p_{i}(Y) Z^{i}\right) \cdot\left(\sum_{i=0}^{\varphi\left(r^{m}\right)-1} q_{i}(Y) Z^{i}\right)=\sum_{i=0}^{\varphi\left(r^{m}\right)-1} e_{i}(Y) Z^{i}
$$

in the ring $R[Z] / \phi_{r^{m}}(Z)$, not just in U. Next, note that $\phi_{r^{k}}(X)=\phi_{r^{m}}\left(X^{r^{k-m}}\right)=\phi_{r^{m}}\left(X^{\varphi\left(r^{l}\right) / 2}\right)$. Hence, plugging in $Y=X$ and $Z=X^{\varphi\left(r^{l}\right) / 2}$, we obtain

$$
r^{w} f(X) g(X)=r^{w} \cdot\left(\sum_{i=0}^{\varphi\left(r^{m}\right)-1} p_{i}(X) X^{i \varphi\left(r^{l}\right) / 2}\right) \cdot\left(\sum_{i=0}^{\varphi\left(r^{m}\right)-1} q_{i}(X) X^{i \varphi\left(r^{l}\right) / 2}\right)=\sum_{i=0}^{\varphi\left(r^{m}\right)-1} e_{i}(X) X^{i \varphi\left(r^{l}\right) / 2}
$$

Since each polynomial $e_{i}(X)$ has degree $<\varphi\left(r^{l}\right)$, this addition can be performed in time $\mathcal{O}\left(\varphi\left(r^{m}\right) \varphi\left(r^{l}\right)\right)=$ $\mathcal{O}\left(r^{k}\right)$.

To summarize: All steps in the above algorithm take time $\mathcal{O}\left(r^{k}\right)$, except the ones in the application of Lemma 2, which take time $\mathcal{O}\left(r^{k} \cdot k\right)+\varphi\left(r^{m}\right) \cdot T(l)$.
The entire algorithm therefore has running time

$$
T(k) \leqslant \mathcal{O}\left(r^{k} \cdot k\right)+\varphi\left(r^{m}\right) \cdot T(l)
$$

We apply induction to show that $T(k) \leqslant C \cdot r^{k} \cdot(k-3) \cdot \log _{2}(k-3)$ for sufficiently large k (and some constant C). Note that $l-3 \leqslant \frac{v+1}{2}-3 \leqslant \frac{k+3}{2}-3=\frac{1}{2}(k-3)$. Hence,

$$
\begin{aligned}
T(k) & \leqslant \mathcal{O}\left(r^{k} \cdot k\right)+C \cdot \varphi\left(r^{m}\right) \cdot r^{l} \cdot(l-3) \cdot \log _{2}(l-3) \\
& \leqslant \mathcal{O}\left(r^{k} \cdot k\right)+C \cdot \varphi\left(r^{m}\right) \cdot r^{l} \cdot \frac{1}{2}(k-3) \cdot \log _{2} \frac{1}{2}(k-3) \\
& =\mathcal{O}\left(r^{k} \cdot k\right)+C \cdot 2 r^{k} \cdot \frac{1}{2}(k-3) \cdot \log _{2} \frac{1}{2}(k-3) \\
& =\mathcal{O}\left(r^{k} \cdot k\right)+C \cdot r^{k} \cdot(k-3) \cdot\left(\log _{2}(k-3)-1\right) .
\end{aligned}
$$

For sufficiently large k, we have $\mathcal{O}\left(r^{k} \cdot k\right) \leqslant \mathcal{O}\left(r^{k} \cdot(k-3)\right)$. As long as C is larger than the constant on the right-hand side, it follows that indeed

$$
T(k) \leqslant C \cdot r^{k} \cdot(k-3) \cdot \log _{2}(k-3) .
$$

It's not difficult to show by induction that the exponent w of r satisfies $w=\mathcal{O}(k)$.
Corollary 1. For large n, we can compute the product of two polynomials $f, g \in R[X]$ of degree $<n$ in time $\mathcal{O}(n \log n \log \log n)$.

Proof. Choose the smallest numbers $k_{2}, k_{3} \geqslant 0$ such that $\varphi\left(2^{k_{2}}\right)>2 n$ and $\varphi\left(3^{k_{3}}\right)>2 n$. Then, $2^{k_{2}}=\mathcal{O}(n)$ and $3^{k_{3}}=\mathcal{O}(n)$. As shown above, we can compute $2^{w_{2}} \cdot f(X) g(X) \bmod \phi_{2^{k_{2}}}(X)$ and $3^{w_{3}} \cdot f(X) g(X)$ $\bmod \phi_{3^{k} 3}(X)$ in time $\mathcal{O}\left(r^{k_{r}} \cdot k_{r} \cdot \log k_{r}\right)=\mathcal{O}(n \log n \log \log n)$. Since they already reduced modulo the cyclotomic polynomials, we can in fact compute the polynomials $2^{w_{2}} \cdot f(X) g(X)$ and $3^{w_{3}} \cdot f(X) g(X)$. Writing 1 as a linear combination of $2^{w_{2}}$ and $3^{w_{3}}$, we can compute the product $f(X) g(X)$.

See sections 3 and 4 of Ber08 for an overview of the history behind this algorithm.

References

[Ber08] Daniel J. Bernstein. "Fast multiplication and its applications". In: Algorithmic number theory: lattices, number fields, curves and cryptography. Vol. 44. Math. Sci. Res. Inst. Publ. Cambridge Univ. Press, Cambridge, 2008, pp. 325-384.

