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Lemma 1. For n ě 1, if f and g are polynomials of degree ă n with g ‰ 0, and there are at most
1 ď m ď n monomials in gpXq, then we can compute f mod g in time Opnmq on an Oplog nq-bit RAM.

Proof. Use schoolbook division. Each time we eliminate the leading coefficient, we only need to modify
m coefficients. We eliminate the leading coefficient at most n times. �

We let φn be the n-th cyclotomic polynomial. Its degree is ϕpnq “ #pZ{nZqˆ. Note that for any prime

r ě 2 and any k ě 1, we have ϕprkq “ p1´ 1{rqrk and the cyclotomic polynomial φrkpXq “ φrpX
rk´1

q “
řr´1

i“0 X
irk´1

has exactly r monomials.

We saw in class that Fourier transforms in
ś

iPZ{rkZR allow us to quickly compute products of elements

of RrXs{pXrk ´ 1q. Between Fourier transforms, the algorithm involved multiplying two elements of
ś

iPZ{rkZR, i.e. rk multiplications in R. It turns out that if we want to multiply elements of the quotient

RrXs{φrdpXq of RrXs{pXrk ´ 1q, only the entries where i is relatively prime to rk matter. (This makes
sense because φrdpXq “

ś

iPpZ{rkZqˆpX ´ ζi
rk
q, so the ring CrXs{φrdpXq captures only the values of a

polynomial at ζi
rk

with i P pZ{rkZqˆ.) We then only need to perform ϕprkq multiplications in R and this
optimization will be crucial in the proof of Lemma 3 below.

Lemma 2. Assume that R contains a root ζrk of φrk . For k ě 1, given any (reduced) elements f and g
of RrXs{φrkpXq, we can compute rk ¨ fg P RrXs{φrkpXq in time Orpr

k ¨ kq on an Opkq-bit RAM. The
arithmetic operations in R used are: Orpr

k ¨kq additions in R, Orpr
k ¨kq multiplications by powers of ζrk ,

exactly ϕprkq further multiplications of two (arbitrary) elements of R.

Proof. Write fpXq “
řϕprkq´1

i“0 aiX
i and gpXq “

řϕprkq´1
i“0 biX

i and let ai “ bi “ 0 for i “ ϕprkq, . . . , rk´1.
Let a “ paiqiPZ{rkZ and b “ pbiqiPZ{rkZ.

Use the Cooley-Tukey algorithm to compute the Fourier transforms pa and pb of a and b.

For j P Z{rkZ, compute pcj “

#

paj ¨pbj , j P pZ{rkZqˆ,
0, otherwise.

Then, use the Cooley-Tukey algorithm to compute the Fourier transform c of pc.

We leave it as an exercise to show that
řrk´1

i“0 ciX
i mod φrkpXq “ rk ¨ fpXqgpXq. �

Lemma 3. Let r “ 2 or 3. For k ě 1, given any (reduced) elements f and g of RrXs{φrkpXq, we can
compute rw ¨ fg in time Oprk ¨ k ¨ logpk ` 1qq on an Opkq-bit RAM, for some w “ wr,k “ Opkq.

Proof. For small k, use schoolbook multiplication and reduce the result modulo φrk .

For large k, proceed recursively as follows: Assume we can multiply for k1 ă k in time T pk1q.

Let

v “

#

k ` 2 if r “ 2,

k ` 1 if r “ 3,

and let m “ tv{2u and l “ v ´m “ rv{2s. If k1 is sufficiently large, then k{2 ď m ď l ă k.
1
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We will consider the following rings:

S “ RrY s{φrlpY q,

U “ SrZs{φrmpZq “ RrY,Zs{pφrlpY q, φrmpZqq.

Note that S contains a root rY s of φrl . Since m ď l, it also contains a root rY rl´m
s of ζrm , so we can

use Lemma 2 to multiply elements F,G of U (or rather, compute some power of r times FG). Any such

multiplication involves Oprm ¨mq additions/multiplications by powers of rY rl´m
s in S. Each of them takes

time Opϕprlqq ď Oprlq, so the total is Oprm`l ¨mq ď Oprk ¨ kq. Moreover, we need to do exactly ϕprmq
multiplications of two elements of S. Since l ă k, we can recursively apply the multiplication algorithm
described in this proof. Each such multiplication in S takes time T plq, so the total is ϕprmq ¨ T plq. All in
all, we can multiply two elements of U in time Oprk ¨ kq ` ϕprmq ¨ T plq.
Now, we describe how to reduce the multiplication in RrXs{φrkpXq to a single multiplication in U :

Note that ϕprlq is divisible by 2 and that ϕprmqϕprlq “ p1´ 1{rq2rm`l “ p1´ 1{rq2rs “ 2ϕprkq.

We can therefore (in time Oprkq) write

fpXq “

ϕprmq´1
ÿ

i“0

pipXq ¨X
i¨ϕprlq{2

with polynomials pipXq of degree ă ϕprlq{2 and write

gpXq “

ϕprmq´1
ÿ

i“0

qipXq ¨X
i¨ϕprlq{2

with polynomials qipXq of degree ă ϕprlq{2.

Consider the elements

F pZq “

ϕprmq´1
ÿ

i“0

rpipY qsZ
i

and

GpZq “

ϕprmq´1
ÿ

i“0

rqipY qsZ
i

of the ring U . As described above, compute rw ¨ FG for some integer w ě 0.

Write

rw ¨ F pZq ¨GpZq “

ϕprmq´1
ÿ

i“0

reipY qsZ
i

with polynomials eipY q of degree ă ϕprlq.

In the variable Y , both sides have degree ă ϕprlq, so we in fact have an equality

rw ¨

¨

˝

ϕprmq´1
ÿ

i“0

pipY qZ
i

˛

‚¨

¨

˝

ϕprmq´1
ÿ

i“0

qipY qZ
i

˛

‚“

ϕprmq´1
ÿ

i“0

eipY qZ
i

in the ring RrZs{φrmpZq, not just in U . Next, note that φrkpXq “ φrmpX
rk´m

q “ φrmpX
ϕprlq{2q. Hence,

plugging in Y “ X and Z “ Xϕprlq{2, we obtain

rwfpXqgpXq “ rw ¨

¨

˝

ϕprmq´1
ÿ

i“0

pipXqX
iϕprlq{2

˛

‚¨

¨

˝

ϕprmq´1
ÿ

i“0

qipXqX
iϕprlq{2

˛

‚“

ϕprmq´1
ÿ

i“0

eipXqX
iϕprlq{2.

Since each polynomial eipXq has degree ă ϕprlq, this addition can be performed in time Opϕprmqϕprlqq “
Oprkq.
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To summarize: All steps in the above algorithm take time Oprkq, except the ones in the application of
Lemma 2, which take time Oprk ¨ kq ` ϕprmq ¨ T plq.
The entire algorithm therefore has running time

T pkq ď Oprk ¨ kq ` ϕprmq ¨ T plq.
We apply induction to show that T pkq ď C ¨ rk ¨ pk ´ 3q ¨ log2pk ´ 3q for sufficiently large k (and some
constant C). Note that l ´ 3 ď v`1

2 ´ 3 ď k`3
2 ´ 3 “ 1

2pk ´ 3q. Hence,

T pkq ď Oprk ¨ kq ` C ¨ ϕprmq ¨ rl ¨ pl ´ 3q ¨ log2pl ´ 3q

ď Oprk ¨ kq ` C ¨ ϕprmq ¨ rl ¨ 1

2
pk ´ 3q ¨ log2

1

2
pk ´ 3q

“ Oprk ¨ kq ` C ¨ 2rk ¨ 1

2
pk ´ 3q ¨ log2

1

2
pk ´ 3q

“ Oprk ¨ kq ` C ¨ rk ¨ pk ´ 3q ¨ plog2pk ´ 3q ´ 1q.

For sufficiently large k, we have Oprk ¨ kq ď Oprk ¨ pk ´ 3qq. As long as C is larger than the constant on
the right-hand side, it follows that indeed

T pkq ď C ¨ rk ¨ pk ´ 3q ¨ log2pk ´ 3q. �

It’s not difficult to show by induction that the exponent w of r satisfies w “ Opkq.

Corollary 1. For large n, we can compute the product of two polynomials f, g P RrXs of degree ă n in
time Opn log n log log nq.

Proof. Choose the smallest numbers k2, k3 ě 0 such that ϕp2k2q ą 2n and ϕp3k3q ą 2n. Then, 2k2 “ Opnq
and 3k3 “ Opnq. As shown above, we can compute 2w2 ¨ fpXqgpXq mod φ2k2 pXq and 3w3 ¨ fpXqgpXq
mod φ3k3 pXq in time Oprkr ¨ kr ¨ log krq “ Opn log n log log nq. Since they already reduced modulo the
cyclotomic polynomials, we can in fact compute the polynomials 2w2 ¨ fpXqgpXq and 3w3 ¨ fpXqgpXq.
Writing 1 as a linear combination of 2w2 and 3w3 , we can compute the product fpXqgpXq. �

See sections 3 and 4 of [Ber08] for an overview of the history behind this algorithm.
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