Math 286X: Arithmetic Statistics
Spring 2020
Problem set #7

Problem 1. Let K be any field and n > 3. Consider the action of PGL,,_1 (K) =
GL,_1(K)/K* on the projective space P"2(K) = K" !/K* given by
[M].[v] = [Mv] for M € GL,_1(K) and v € K" !. We say that n
points Pi,..., P, € P""2(K) are in general position if any n — 1 of the
points span P"~2(K). (For n = 3, this simply means that the three points
Py, Py, Py € PY(K) are distinct.)

a) Show that for any n points Py, ..., P, € P""2(K) in general position
and any n points Q1,...,Q, € P 2(K) in general position, there is
exactly one g € PGL,,_1(K) such that gP; = Q; for all i = 1,...,n.
(In other words, PGL,_1(K) acts simply transitively on the set of
n-tuples of points in P"~2(K) in general position.)

Solution. Tt suffices to prove this for Py =[1:0:---:0], ..., P, =
[0:---:0:1], P, =[1:---:1]. Let Q; = [v;] with v; € K"~!. Write
g = [M], where M € GL,_1(K) has columns wy,...,w,—1 € K"L.
We have gP; = Q; for all ¢ if and only if [w;] = [v;] fori=1,...,n—1
and [wy + -+ +wp—1] = [vy]. The first n— 1 conditions can be written
as w; = A\jv; with \; € K*. The last condition then means that [Ajv; +
+ +Ap—1Up—1] = [vn]. Scaling the matrix M by an element of K, we
can assume A\vq+---+Ap_1Un_1 = V. Since vy, ..., v,_1 form a basis
of K"~ 1, there are unique \i,...,\,—1 € K satisfying this equation.
Since any n — 1 of the points vy, ..., v, are linearly independent, we in
fact have \; # 0 for all 7. Since v1,...,v,_1 are linearly independent,
the resulting (unique) matrix M lies in GL,_1(K). O

b) Consider the action of PGL,_;(K) on the set of sets X of n points in
P"~}(K) in general position. Show that the stabilizer of any such set
X is isomorphic to S,,.

Solution. By a), there is exactly one element of PGL,,_1(K) for any
permutation of the n points. O



Problem 2. Consider the trivial cubic extension S = Z x Z x Z of Z. Find
all cubic subextensions S’ < S of Z of index [S : §'] € {p, p?,p®}, where p is
prime.

Hint: Use the appropriate normal form

Solution. The trivial extension S of Z corresponds to the cubic form f(X,Y)
XY (Y — X) € V(Z). The cubic subextensions S € S correspond to orbits
GL2(Z)M in GL2(Z)\(M2(Z) n GL2(Q)) such that M.f € V(Z). Each such
orbit contains exactly one matrix M in Hermite normal form: M = (‘61 abQ)

for 1 <aj,az€Z and be {0,...,as — 1}. The index is [S : '] = ajas. We
have

alX)(bX + agY)(bX + aY — alX)
aias

M.f(X,Y) = (

—aib + b
= TMOEDT X3 4 (Cap 4 2b) - X2Y 4 anX Y2,
as

so M.f € V(Z) if and only if as | b(b — aq).

Hence, subextensions of index d are in bijection with triples (a1, ag,b) with
aj,a2=>1,0<b<ay—1,a1 a3 =d, and as | b(b— ay).

For d = p, the three possible triples are (p,1,0), (1,p,0), (1,p,1). They
correspond to the subextensions {(z,y,2) | x =y mod p}, {r =z mod p},
{y =z mod p}.

For d = p?, the four possible triples are (p?,1,0), (p,p,0), (1,p%,0), (1,p%1).
They correspond to the subextensions {x =y mod p?}, {z = 2z mod p?},
{y =2 mod p?}, {x =y =2 mod p}.

For d = p3, the p + 4 possible triples are (p3,1,0), (p?, p,0), (1,p%,0),
(1,p%,1), (p,p?,b) with b = 0,p,...,p(p—1). They correspond to the subex-
tensions {x =y mod p3}, {x = z mod p*}, {y =2 mod p3}, {r =y =2
mod p and a(z — y) + b(xz — 2) =0 mod p?} for [a : b] € P}(F,). O

Definition. We call a degree n extension S of a Dedekind domain R mono-
genic if the R-algebra S is generated by one element: S = R[a] for some
a€esS.

Problem 3. a) Show that the trivial degree n extension S = Zy, x - - - xZ,,
of Z;, is monogenic if and only if n < p.

Solution. An element a = (o, ...,a,) € S generates S if and only if

the matrix M = (&)1<i<n, 0<j<n—1 € My(Z,) with columns 1, o, ..., &

n—1



is invertible. It determinant is + [];_;(e; — o), which is invertible if
and only if the residues o; mod p for ¢ = 1,...,n are distinct. Of
course, that’s possible if and only if n < p. ]

b) Let K be a degree n field extension of Q in which some (unramified)
prime p < n splits completely. Show that the extension Ok of Z is
not monogenic.

Solution. The prime p splits completely if and only if K ®qg Q, =
Qp x -+ x Qp. This means that O ®z Z, is (isomorphic to) the
ring of integers Z, x - - - x Z,, which according to a) is not monogenic.
Hence, Ok is not monogenic. O

c) Show that for any » > 1 and any prime number p, there is a degree n
field extension of QQ in which the (unramified) prime p splits completely.

Solution. Consider the monic degree n polynomial f(X) =[]/, (X —
i). Choose e large enough so that e > 2uv,(f'(i)) for i = 1,...,n.
Also, choose a prime g # p. By the Chinese remainder theorem, there
is a monic degree n polynomial g(X) € Z[X] such that g(X) = f(X)
mod p¢ and g(X) = X" +¢ mod ¢?. The second condition shows that
g(X) is an Eisenstein polynomial at ¢ and therefore irreducible. The
first condition shows that g(i) = 0 mod p® and v,(¢'(z)) = vp(f'(7))
fori =1,...,n. By Hensel’s lemma, this implies that each¢ =1,...,n
lifts modulo p® to a unique root in Z,. Furthermore, it implies that
i # j mod p°for any ¢ # j with 1 < 4,j < n. In particular, g(X) splits
completely into n distinct linear factors. Therefore, K = Q[X]/(g(X))
is a degree n field extension of Q in which p splits completely. O

Problem 4. Let R be a principal ideal domain and let the cubic form
f(X,Y) = aX?® + bX2Y + cXY? + dY3 € V(R) correspond to the cubic
extension S of R with basis (1,w;,ws).

a) Show that S = R[w;] if and only if a € R*.

Solution. By construction, we have w? = —ac — bw; + awz. Hence,
1,w1,w? forms a basis of S = (1, w,ws)p if and only if the matrix
1 0 O
0 1 0
—ac —b a
is invertible over R, which is equivalent to a € R*. ]



b)

Show that S is monogenic if and only if f(z,y) € R* for some z,y € R.

Solution. If f(x,y) € R*, then x,y are in particular relatively prime.
This implies there is a matrix M € GLa(R) of the form (5 %). By
definition, M.f(X,Y) = a’ X3 +--- + d'Y? satisfies ' = (M.f)(1,0) =
f(z,y)/det(M) e R*. But f corresponds to the same cubic extension
as M.f, which is monogenic by part a).

Conversely, if S is monogenic, then there is some w] € S such that
1,w],wf is a basis of S. By part a), this shows that there is a base
change matrix M € GLa(R) such that M.f(X,Y) =d' X3+ ---+d'Y3
satisfies a’ € R*. If the first row of M is (x y), it follows as above
that f(z,y) € R*. O

Problem 5. Order the cubic field extensions K|Q by |Dg].

a)

Show that a random K is totally real with probability 1/4.

Solution. Let E = RxRxRor £ = RxC. If you look back at the com-
putation of the number of cubic field extensions K|Q with |Dg| < T
(in particular the computation of the volume of a fundamental do-
main), you realize that K ®g R =~ E with probability proportional to

xm- We have # Aut(R x R x R) = 6 and # Aut(R x C) = 2.
Hence, K ®g R = R x R x R with probability 32575 = §- 0

For a fixed prime number p, show that a random K is unramified at
p with probability 1/(1 +p~t + p~2).

Solution. The computation of vol(V™**(Z,)) in class shows that for a

fixed nondegenerate cubic extension L of Q,, we have K ®qg Q, = L

with probability proportional to #@ﬂ%k). We have shown that

|DL\Q| -1 -2
D FRwm

L nondeg. cubic ext. of Qp

so the probability is
Dol
#Aut(L)

L+pt+p %




We have furthermore shown in class that (cf. extensions of finite field)

1
2 #Aut(k) !

k nondeg. cubic ext. of F)

By the correspondence between unramified extensions of a local field
and extensions of its residue field, it follows that

1
2 )~ -

L unram. nondeg. cubic ext. of Qp

For a fixed prime number p, consider only those K which are unrami-
fied at p. Fix a partition n = k; +- - - +k,. Show that the (conditional)
probability that K has splitting type (k1, ..., k) at p equals the prob-
ability that a random 7 € S,, has cycle type (k1,...,k;).

Solution. We have shown in class that (cf. extensions of finite fields)

1
#Aut(Fpy % -- x Fpry)

= P(7 has cycle type (k1,...,k.) | m€ Sy)

The result again follows from the correspondence between unramified
extensions of a local field and extensions of its residue field. O

For a fixed prime number p, show that a random K is totally ramified
at p with probability 1/(1 + p + p?).

Solution. We have shown in class that (cf. Serre’s mass formula)

|DL‘QP| a2
2 ZAuw(L) P

L tot. ram. field ext. of Qp

so the probability is — 2 = 1/(1+p+p?) O
T1p—T4p—2 p+p)

Fix some s > 0. Show that a random K is ramified at only s primes
with probability zero (just like a random integer is only divisible by s
primes with probability zero).



Solution. Fix some P > 2 and some primes p1 < --- < ps < P. The
same sieve as in class and the argument from b) shows that that K is
ramified at p1,...,ps, but at no other primes p < P with probability

1
1 T 1 1p, 4p 2 1 S l4p;t
|| 1 _2|| 1 _|| -1 —2'|| o
p<p LTPT P77 e — pxp 1EPT AP P

Hence, K is unramified at exactly s primes p < P with probability

1 1+t
Ui 2 11

p<P p1<--<ps<Pi=1

1 1+p 1\ o
b
(i) (340
-1 —2
<p<P1+p TP ) (ng p

For large P, we have

A+p " +p )= || — =logP
1 2 1_1 -

p<P p<P p
and .
1+p~ 1
NP =N —loglog P,
p<P p p<P p
so the upper bound in goes to 0 as P — oo. ]



