
Math 286X: Arithmetic Statistics

Spring 2020

Problem set #7

Problem 1. LetK be any field and n ě 3. Consider the action of PGLn´1pKq “
GLn´1pKq{K

ˆ on the projective space Pn´2pKq “ Kn´1{Kˆ given by
rM s.rvs “ rMvs for M P GLn´1pKq and v P Kn´1. We say that n
points P1, . . . , Pn P Pn´2pKq are in general position if any n ´ 1 of the
points span Pn´2pKq. (For n “ 3, this simply means that the three points
P1, P2, P3 P P1pKq are distinct.)

a) Show that for any n points P1, . . . , Pn P Pn´2pKq in general position
and any n points Q1, . . . , Qn P Pn´2pKq in general position, there is
exactly one g P PGLn´1pKq such that gPi “ Qi for all i “ 1, . . . , n.
(In other words, PGLn´1pKq acts simply transitively on the set of
n-tuples of points in Pn´2pKq in general position.)

Solution. It suffices to prove this for P1 “ r1 : 0 : ¨ ¨ ¨ : 0s, . . . , Pn´1 “

r0 : ¨ ¨ ¨ : 0 : 1s, Pn “ r1 : ¨ ¨ ¨ : 1s. Let Qi “ rvis with vi P K
n´1. Write

g “ rM s, where M P GLn´1pKq has columns w1, . . . , wn´1 P K
n´1.

We have gPi “ Qi for all i if and only if rwis “ rvis for i “ 1, . . . , n´ 1
and rw1`¨ ¨ ¨`wn´1s “ rvns. The first n´1 conditions can be written
as wi “ λivi with λi P K

ˆ. The last condition then means that rλ1v1`

¨ ¨ ¨`λn´1vn´1s “ rvns. Scaling the matrix M by an element of Kˆ, we
can assume λ1v1`¨ ¨ ¨`λn´1vn´1 “ vn. Since v1, . . . , vn´1 form a basis
of Kn´1, there are unique λ1, . . . , λn´1 P K satisfying this equation.
Since any n´1 of the points v1, . . . , vn are linearly independent, we in
fact have λi ‰ 0 for all i. Since v1, . . . , vn´1 are linearly independent,
the resulting (unique) matrix M lies in GLn´1pKq.

b) Consider the action of PGLn´1pKq on the set of sets X of n points in
Pn´1pKq in general position. Show that the stabilizer of any such set
X is isomorphic to Sn.

Solution. By a), there is exactly one element of PGLn´1pKq for any
permutation of the n points.
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Problem 2. Consider the trivial cubic extension S “ ZˆZˆZ of Z. Find
all cubic subextensions S1 Ă S of Z of index rS : S1s P tp, p2, p3u, where p is
prime.
Hint: Use the appropriate normal form

Solution. The trivial extension S of Z corresponds to the cubic form fpX,Y q “
XY pY ´Xq P VpZq. The cubic subextensions S1 Ď S correspond to orbits
GL2pZqM in GL2pZqzpM2pZq XGL2pQqq such that M.f P VpZq. Each such
orbit contains exactly one matrix M in Hermite normal form: M “

`

a1 b
0 a2

˘

for 1 ď a1, a2 P Z and b P t0, . . . , a2 ´ 1u. The index is rS : S1s “ a1a2. We
have

M.fpX,Y q “
pa1XqpbX ` a2Y qpbX ` a2Y ´ a1Xq

a1a2

“
´a1b` b

2

a2
¨X3 ` p´a1 ` 2bq ¨X2Y ` a2XY

2,

so M.f P VpZq if and only if a2 | bpb´ a1q.

Hence, subextensions of index d are in bijection with triples pa1, a2, bq with
a1, a2 ě 1, 0 ď b ď a2 ´ 1, a1 ¨ a2 “ d, and a2 | bpb´ a1q.

For d “ p, the three possible triples are pp, 1, 0q, p1, p, 0q, p1, p, 1q. They
correspond to the subextensions tpx, y, zq | x ” y mod pu, tx ” z mod pu,
ty ” z mod pu.

For d “ p2, the four possible triples are pp2, 1, 0q, pp, p, 0q, p1, p2, 0q, p1, p2, 1q.
They correspond to the subextensions tx ” y mod p2u, tx ” z mod p2u,
ty ” z mod p2u, tx ” y ” z mod pu.

For d “ p3, the p ` 4 possible triples are pp3, 1, 0q, pp2, p, 0q, p1, p3, 0q,
p1, p3, 1q, pp, p2, bq with b “ 0, p, . . . , ppp´1q. They correspond to the subex-
tensions tx ” y mod p3u, tx ” z mod p3u, ty ” z mod p3u, tx ” y ” z
mod p and apx´ yq ` bpx´ zq ” 0 mod p2u for ra : bs P P1pFpq.

Definition. We call a degree n extension S of a Dedekind domain R mono-
genic if the R-algebra S is generated by one element: S “ Rrαs for some
α P S.

Problem 3. a) Show that the trivial degree n extension S “ Zpˆ¨ ¨ ¨ˆZp

of Zp is monogenic if and only if n ď p.

Solution. An element α “ pα1, . . . , αnq P S generates S if and only if
the matrixM “ pαj

i q1ďiďn, 0ďjďn´1 PMnpZpq with columns 1, α, . . . , αn´1
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is invertible. It determinant is ˘
ś

iăjpαi ´ αjq, which is invertible if
and only if the residues αi mod p for i “ 1, . . . , n are distinct. Of
course, that’s possible if and only if n ď p.

b) Let K be a degree n field extension of Q in which some (unramified)
prime p ă n splits completely. Show that the extension OK of Z is
not monogenic.

Solution. The prime p splits completely if and only if K bQ Qp –

Qp ˆ ¨ ¨ ¨ ˆ Qp. This means that OK bZ Zp is (isomorphic to) the
ring of integers Zpˆ ¨ ¨ ¨ ˆZp, which according to a) is not monogenic.
Hence, OK is not monogenic.

c) Show that for any n ě 1 and any prime number p, there is a degree n
field extension of Q in which the (unramified) prime p splits completely.

Solution. Consider the monic degree n polynomial fpXq “
śn

i“1pX´
iq. Choose e large enough so that e ą 2vppf

1piqq for i “ 1, . . . , n.
Also, choose a prime q ‰ p. By the Chinese remainder theorem, there
is a monic degree n polynomial gpXq P ZrXs such that gpXq ” fpXq
mod pe and gpXq ” Xn`q mod q2. The second condition shows that
gpXq is an Eisenstein polynomial at q and therefore irreducible. The
first condition shows that gpiq ” 0 mod pe and vppg

1piqq “ vppf
1piqq

for i “ 1, . . . , n. By Hensel’s lemma, this implies that each i “ 1, . . . , n
lifts modulo pe to a unique root in Zp. Furthermore, it implies that
i ı j mod pe for any i ‰ j with 1 ď i, j ď n. In particular, gpXq splits
completely into n distinct linear factors. Therefore, K “ QrXs{pgpXqq
is a degree n field extension of Q in which p splits completely.

Problem 4. Let R be a principal ideal domain and let the cubic form
fpX,Y q “ aX3 ` bX2Y ` cXY 2 ` dY 3 P VpRq correspond to the cubic
extension S of R with basis p1, ω1, ω2q.

a) Show that S “ Rrω1s if and only if a P Rˆ.

Solution. By construction, we have ω2
1 “ ´ac ´ bω1 ` aω2. Hence,

1, ω1, ω
2
1 forms a basis of S “ x1, ω1, ω2yR if and only if the matrix

¨

˝

1 0 0
0 1 0
´ac ´b a

˛

‚

is invertible over R, which is equivalent to a P Rˆ.
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b) Show that S is monogenic if and only if fpx, yq P Rˆ for some x, y P R.

Solution. If fpx, yq P Rˆ, then x, y are in particular relatively prime.
This implies there is a matrix M P GL2pRq of the form p x y

˚ ˚ q. By
definition, M.fpX,Y q “ a1X3` ¨ ¨ ¨ ` d1Y 3 satisfies a1 “ pM.fqp1, 0q “
fpx, yq{detpMq P Rˆ. But f corresponds to the same cubic extension
as M.f , which is monogenic by part a).

Conversely, if S is monogenic, then there is some ω11 P S such that
1, ω11, ω

12
1 is a basis of S. By part a), this shows that there is a base

change matrix M P GL2pRq such that M.fpX,Y q “ a1X3` ¨ ¨ ¨ ` d1Y 3

satisfies a1 P Rˆ. If the first row of M is
`

x y
˘

, it follows as above
that fpx, yq P Rˆ.

Problem 5. Order the cubic field extensions K|Q by |DK |.

a) Show that a random K is totally real with probability 1{4.

Solution. Let E “ RˆRˆR or E “ RˆC. If you look back at the com-
putation of the number of cubic field extensions K|Q with |DK | ď T
(in particular the computation of the volume of a fundamental do-
main), you realize that K bQ R – E with probability proportional to

1
# AutRpEq

. We have # AutpR ˆ R ˆ Rq “ 6 and # AutpR ˆ Cq “ 2.

Hence, K bQ R – Rˆ Rˆ R with probability 1{6
1{6`1{2 “

1
4 .

b) For a fixed prime number p, show that a random K is unramified at
p with probability 1{p1` p´1 ` p´2q.

Solution. The computation of volpVmaxpZpqq in class shows that for a
fixed nondegenerate cubic extension L of Qp, we have K bQ Qp – L

with probability proportional to
|DL|Q|

# AutpLq . We have shown that

ÿ

L nondeg. cubic ext. of Qp

|DL|Q|

# AutpKq
“ 1` p´1 ` p´2,

so the probability is
|DL|Q|

# AutpLq

1` p´1 ` p´2
.
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We have furthermore shown in class that (cf. extensions of finite field)

ÿ

k nondeg. cubic ext. of Fp

1

# Autpkq
“ 1.

By the correspondence between unramified extensions of a local field
and extensions of its residue field, it follows that

ÿ

L unram. nondeg. cubic ext. of Qp

1

# AutpLq
“ 1.

c) For a fixed prime number p, consider only those K which are unrami-
fied at p. Fix a partition n “ k1`¨ ¨ ¨`kr. Show that the (conditional)
probability that K has splitting type pk1, . . . , krq at p equals the prob-
ability that a random π P Sn has cycle type pk1, . . . , krq.

Solution. We have shown in class that (cf. extensions of finite fields)

1

# AutpFpk1 ˆ ¨ ¨ ¨ ˆ Fpkr q
“ Ppπ has cycle type pk1, . . . , krq | π P Snq

The result again follows from the correspondence between unramified
extensions of a local field and extensions of its residue field.

d) For a fixed prime number p, show that a random K is totally ramified
at p with probability 1{p1` p` p2q.

Solution. We have shown in class that (cf. Serre’s mass formula)

ÿ

L tot. ram. field ext. of Qp

|DL|Qp
|

# AutpLq
“ p´2,

so the probability is p´2

1`p´1`p´2 “ 1{p1` p` p2q.

e) Fix some s ě 0. Show that a random K is ramified at only s primes
with probability zero (just like a random integer is only divisible by s
primes with probability zero).
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Solution. Fix some P ě 2 and some primes p1 ă ¨ ¨ ¨ ă ps ď P . The
same sieve as in class and the argument from b) shows that that K is
ramified at p1, . . . , ps, but at no other primes p ď P with probability

ź

pďP

1

1` p´1 ` p´2
¨

s
ź

i“1

1´ 1
1`p´1

i `p´2
i

1
1`p´1

i `p´2
i

“
ź

pďP

1

1` p´1 ` p´2
¨

s
ź

i“1

1` p´1
i

pi
.

Hence, K is unramified at exactly s primes p ď P with probability

ź

pďP

1

1` p´1 ` p´2
¨

ÿ

p1ă¨¨¨ăpsďP

s
ź

i“1

1` p´1
i

pi

ď

˜

ź

pďP

1

1` p´1 ` p´2

¸

¨

˜

ÿ

pďP

1` p´1

p

¸s (1)

For large P , we have

ź

pďP

p1` p´1 ` p´2q —
ź

pďP

1

1´ p´1
— logP

and
ÿ

pďP

1` p´1

p
—

ÿ

pďP

1

p
— log logP,

so the upper bound in (1) goes to 0 as P Ñ8.
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