Math 286X: Arithmetic Statistics Spring 2020 Problem set #7

Problem 1. Let K be any field and $n \ge 3$. Consider the action of $\operatorname{PGL}_{n-1}(K) = \operatorname{GL}_{n-1}(K)/K^{\times}$ on the projective space $\mathbb{P}^{n-2}(K) = K^{n-1}/K^{\times}$ given by [M].[v] = [Mv] for $M \in \operatorname{GL}_{n-1}(K)$ and $v \in K^{n-1}$. We say that n points $P_1, \ldots, P_n \in \mathbb{P}^{n-2}(K)$ are in general position if any n-1 of the points span $\mathbb{P}^{n-2}(K)$. (For n = 3, this simply means that the three points $P_1, P_2, P_3 \in \mathbb{P}^1(K)$ are distinct.)

a) Show that for any *n* points $P_1, \ldots, P_n \in \mathbb{P}^{n-2}(K)$ in general position and any *n* points $Q_1, \ldots, Q_n \in \mathbb{P}^{n-2}(K)$ in general position, there is exactly one $g \in \mathrm{PGL}_{n-1}(K)$ such that $gP_i = Q_i$ for all $i = 1, \ldots, n$. (In other words, $\mathrm{PGL}_{n-1}(K)$ acts simply transitively on the set of *n*-tuples of points in $\mathbb{P}^{n-2}(K)$ in general position.)

Solution. It suffices to prove this for $P_1 = [1:0:\cdots:0], \ldots, P_{n-1} = [0:\cdots:0:1], P_n = [1:\cdots:1]$. Let $Q_i = [v_i]$ with $v_i \in K^{n-1}$. Write g = [M], where $M \in \operatorname{GL}_{n-1}(K)$ has columns $w_1, \ldots, w_{n-1} \in K^{n-1}$. We have $gP_i = Q_i$ for all i if and only if $[w_i] = [v_i]$ for $i = 1, \ldots, n-1$ and $[w_1 + \cdots + w_{n-1}] = [v_n]$. The first n-1 conditions can be written as $w_i = \lambda_i v_i$ with $\lambda_i \in K^{\times}$. The last condition then means that $[\lambda_1 v_1 + \cdots + \lambda_{n-1} v_{n-1}] = [v_n]$. Scaling the matrix M by an element of K^{\times} , we can assume $\lambda_1 v_1 + \cdots + \lambda_{n-1} v_{n-1} = v_n$. Since v_1, \ldots, v_{n-1} form a basis of K^{n-1} , there are unique $\lambda_1, \ldots, \lambda_{n-1} \in K$ satisfying this equation. Since any n-1 of the points v_1, \ldots, v_n are linearly independent, we in fact have $\lambda_i \neq 0$ for all i. Since v_1, \ldots, v_{n-1} are linearly independent, the resulting (unique) matrix M lies in $\operatorname{GL}_{n-1}(K)$.

b) Consider the action of $\operatorname{PGL}_{n-1}(K)$ on the set of sets X of n points in $\mathbb{P}^{n-1}(K)$ in general position. Show that the stabilizer of any such set X is isomorphic to S_n .

Solution. By a), there is exactly one element of $PGL_{n-1}(K)$ for any permutation of the *n* points.

Problem 2. Consider the trivial cubic extension $S = \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ of \mathbb{Z} . Find all cubic subextensions $S' \subset S$ of \mathbb{Z} of index $[S : S'] \in \{p, p^2, p^3\}$, where p is prime.

Hint: Use the appropriate normal form

Solution. The trivial extension S of \mathbb{Z} corresponds to the cubic form $f(X, Y) = XY(Y - X) \in \mathcal{V}(\mathbb{Z})$. The cubic subextensions $S' \subseteq S$ correspond to orbits $\operatorname{GL}_2(\mathbb{Z})M$ in $\operatorname{GL}_2(\mathbb{Z}) \setminus (M_2(\mathbb{Z}) \cap \operatorname{GL}_2(\mathbb{Q}))$ such that $M.f \in \mathcal{V}(\mathbb{Z})$. Each such orbit contains exactly one matrix M in Hermite normal form: $M = \begin{pmatrix} a_1 & b \\ 0 & a_2 \end{pmatrix}$ for $1 \leq a_1, a_2 \in \mathbb{Z}$ and $b \in \{0, \ldots, a_2 - 1\}$. The index is $[S : S'] = a_1a_2$. We have

$$M.f(X,Y) = \frac{(a_1X)(bX + a_2Y)(bX + a_2Y - a_1X)}{a_1a_2}$$
$$= \frac{-a_1b + b^2}{a_2} \cdot X^3 + (-a_1 + 2b) \cdot X^2Y + a_2XY^2$$

so $M.f \in \mathcal{V}(\mathbb{Z})$ if and only if $a_2 \mid b(b-a_1)$.

Hence, subextensions of index d are in bijection with triples (a_1, a_2, b) with $a_1, a_2 \ge 1, 0 \le b \le a_2 - 1, a_1 \cdot a_2 = d$, and $a_2 \mid b(b - a_1)$.

For d = p, the three possible triples are (p, 1, 0), (1, p, 0), (1, p, 1). They correspond to the subextensions $\{(x, y, z) \mid x \equiv y \mod p\}$, $\{x \equiv z \mod p\}$, $\{y \equiv z \mod p\}$.

For $d = p^2$, the four possible triples are $(p^2, 1, 0)$, (p, p, 0), $(1, p^2, 0)$, $(1, p^2, 1)$. They correspond to the subextensions $\{x \equiv y \mod p^2\}$, $\{x \equiv z \mod p^2\}$, $\{y \equiv z \mod p^2\}$, $\{x \equiv y \equiv z \mod p\}$.

For $d = p^3$, the p + 4 possible triples are $(p^3, 1, 0)$, $(p^2, p, 0)$, $(1, p^3, 0)$, $(1, p^3, 1)$, (p, p^2, b) with $b = 0, p, \ldots, p(p-1)$. They correspond to the subextensions $\{x \equiv y \mod p^3\}$, $\{x \equiv z \mod p^3\}$, $\{y \equiv z \mod p^3\}$, $\{x \equiv y \equiv z \mod p$ and $a(x - y) + b(x - z) \equiv 0 \mod p^2\}$ for $[a : b] \in \mathbb{P}^1(\mathbb{F}_p)$.

Definition. We call a degree n extension S of a Dedekind domain R monogenic if the R-algebra S is generated by one element: $S = R[\alpha]$ for some $\alpha \in S$.

Problem 3. a) Show that the trivial degree n extension $S = \mathbb{Z}_p \times \cdots \times \mathbb{Z}_p$ of \mathbb{Z}_p is monogenic if and only if $n \leq p$.

Solution. An element $\alpha = (\alpha_1, \ldots, \alpha_n) \in S$ generates S if and only if the matrix $M = (\alpha_i^j)_{1 \leq i \leq n, 0 \leq j \leq n-1} \in M_n(\mathbb{Z}_p)$ with columns $1, \alpha, \ldots, \alpha^{n-1}$ is invertible. It determinant is $\pm \prod_{i < j} (\alpha_i - \alpha_j)$, which is invertible if and only if the residues $\alpha_i \mod p$ for $i = 1, \ldots, n$ are distinct. Of course, that's possible if and only if $n \leq p$.

b) Let K be a degree n field extension of \mathbb{Q} in which some (unramified) prime p < n splits completely. Show that the extension \mathcal{O}_K of \mathbb{Z} is not monogenic.

Solution. The prime p splits completely if and only if $K \otimes_{\mathbb{Q}} \mathbb{Q}_p \cong \mathbb{Q}_p \times \cdots \times \mathbb{Q}_p$. This means that $\mathcal{O}_K \otimes_{\mathbb{Z}} \mathbb{Z}_p$ is (isomorphic to) the ring of integers $\mathbb{Z}_p \times \cdots \times \mathbb{Z}_p$, which according to a) is not monogenic. Hence, \mathcal{O}_K is not monogenic.

c) Show that for any $n \ge 1$ and any prime number p, there is a degree n field extension of \mathbb{Q} in which the (unramified) prime p splits completely.

Solution. Consider the monic degree n polynomial $f(X) = \prod_{i=1}^{n} (X - i)$. Choose e large enough so that $e > 2v_p(f'(i))$ for $i = 1, \ldots, n$. Also, choose a prime $q \neq p$. By the Chinese remainder theorem, there is a monic degree n polynomial $g(X) \in \mathbb{Z}[X]$ such that $g(X) \equiv f(X)$ mod p^e and $g(X) \equiv X^n + q \mod q^2$. The second condition shows that g(X) is an Eisenstein polynomial at q and therefore irreducible. The first condition shows that $g(i) \equiv 0 \mod p^e$ and $v_p(g'(i)) = v_p(f'(i))$ for $i = 1, \ldots, n$. By Hensel's lemma, this implies that each $i = 1, \ldots, n$ lifts modulo p^e to a unique root in \mathbb{Z}_p . Furthermore, it implies that $i \neq j \mod p^e$ for any $i \neq j$ with $1 \leq i, j \leq n$. In particular, g(X) splits completely into n distinct linear factors. Therefore, $K = \mathbb{Q}[X]/(g(X))$ is a degree n field extension of \mathbb{Q} in which p splits completely.

Problem 4. Let R be a principal ideal domain and let the cubic form $f(X,Y) = aX^3 + bX^2Y + cXY^2 + dY^3 \in \mathcal{V}(R)$ correspond to the cubic extension S of R with basis $(1, \omega_1, \omega_2)$.

a) Show that $S = R[\omega_1]$ if and only if $a \in R^{\times}$.

Solution. By construction, we have $\omega_1^2 = -ac - b\omega_1 + a\omega_2$. Hence, $1, \omega_1, \omega_1^2$ forms a basis of $S = \langle 1, \omega_1, \omega_2 \rangle_R$ if and only if the matrix

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -ac & -b & a \end{pmatrix}$$

is invertible over R, which is equivalent to $a \in \mathbb{R}^{\times}$.

b) Show that S is monogenic if and only if $f(x, y) \in \mathbb{R}^{\times}$ for some $x, y \in \mathbb{R}$.

Solution. If $f(x, y) \in \mathbb{R}^{\times}$, then x, y are in particular relatively prime. This implies there is a matrix $M \in \operatorname{GL}_2(\mathbb{R})$ of the form $\begin{pmatrix} x & y \\ * & * \end{pmatrix}$. By definition, $M.f(X,Y) = a'X^3 + \cdots + d'Y^3$ satisfies $a' = (M.f)(1,0) = f(x,y)/\det(M) \in \mathbb{R}^{\times}$. But f corresponds to the same cubic extension as M.f, which is monogenic by part a).

Conversely, if S is monogenic, then there is some $\omega'_1 \in S$ such that $1, \omega'_1, \omega'^2_1$ is a basis of S. By part a), this shows that there is a base change matrix $M \in \operatorname{GL}_2(R)$ such that $M.f(X,Y) = a'X^3 + \cdots + d'Y^3$ satisfies $a' \in R^{\times}$. If the first row of M is $(x \ y)$, it follows as above that $f(x, y) \in R^{\times}$.

Problem 5. Order the cubic field extensions $K|\mathbb{Q}$ by $|D_K|$.

a) Show that a random K is totally real with probability 1/4.

Solution. Let $E = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ or $E = \mathbb{R} \times \mathbb{C}$. If you look back at the computation of the number of cubic field extensions $K|\mathbb{Q}$ with $|D_K| \leq T$ (in particular the computation of the volume of a fundamental domain), you realize that $K \otimes_{\mathbb{Q}} \mathbb{R} \cong E$ with probability proportional to $\frac{1}{\# \operatorname{Aut}_{\mathbb{R}}(E)}$. We have $\# \operatorname{Aut}(\mathbb{R} \times \mathbb{R} \times \mathbb{R}) = 6$ and $\# \operatorname{Aut}(\mathbb{R} \times \mathbb{C}) = 2$. Hence, $K \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ with probability $\frac{1/6}{1/6+1/2} = \frac{1}{4}$.

b) For a fixed prime number p, show that a random K is unramified at p with probability $1/(1 + p^{-1} + p^{-2})$.

Solution. The computation of $\operatorname{vol}(\mathcal{V}^{\max}(\mathbb{Z}_p))$ in class shows that for a fixed nondegenerate cubic extension L of \mathbb{Q}_p , we have $K \otimes_{\mathbb{Q}} \mathbb{Q}_p \cong L$ with probability proportional to $\frac{|D_{L|\mathbb{Q}}|}{\#\operatorname{Aut}(L)}$. We have shown that

$$\sum_{L \text{ nondeg. cubic ext. of } \mathbb{Q}_p} \frac{|D_{L|\mathbb{Q}}|}{\# \operatorname{Aut}(K)} = 1 + p^{-1} + p^{-2},$$

so the probability is

$$\frac{\frac{|D_L|\mathbb{Q}|}{\#\operatorname{Aut}(L)}}{1+p^{-1}+p^{-2}}$$

We have furthermore shown in class that (cf. extensions of finite field)

$$\sum_{k \text{ nondeg. cubic ext. of } \mathbb{F}_p} \frac{1}{\# \operatorname{Aut}(k)} = 1.$$

By the correspondence between unramified extensions of a local field and extensions of its residue field, it follows that

$$\sum_{L \text{ unram. nondeg. cubic ext. of } \mathbb{Q}_p} \frac{1}{\# \operatorname{Aut}(L)} = 1.$$

c) For a fixed prime number p, consider only those K which are unramified at p. Fix a partition $n = k_1 + \cdots + k_r$. Show that the (conditional) probability that K has splitting type (k_1, \ldots, k_r) at p equals the probability that a random $\pi \in S_n$ has cycle type (k_1, \ldots, k_r) .

Solution. We have shown in class that (cf. extensions of finite fields)

$$\frac{1}{\#\operatorname{Aut}(\mathbb{F}_{p^{k_1}}\times\cdots\times\mathbb{F}_{p^{k_r}})}=\mathbb{P}(\pi \text{ has cycle type } (k_1,\ldots,k_r)\mid \pi\in S_n)$$

The result again follows from the correspondence between unramified extensions of a local field and extensions of its residue field. \Box

d) For a fixed prime number p, show that a random K is totally ramified at p with probability $1/(1 + p + p^2)$.

Solution. We have shown in class that (cf. Serre's mass formula)

$$\sum_{\substack{L \text{ tot. ram. field ext. of } \mathbb{Q}_p}} \frac{|D_{L|\mathbb{Q}_p}|}{\# \operatorname{Aut}(L)} = p^{-2},$$

bility is $\frac{p^{-2}}{1+p^{-1}+p^{-2}} = 1/(1+p+p^2).$

e) Fix some $s \ge 0$. Show that a random K is ramified at only s primes with probability zero (just like a random integer is only divisible by s primes with probability zero).

so the proba

Solution. Fix some $P \ge 2$ and some primes $p_1 < \cdots < p_s \le P$. The same sieve as in class and the argument from b) shows that that K is ramified at p_1, \ldots, p_s , but at no other primes $p \le P$ with probability

$$\prod_{p \leqslant P} \frac{1}{1+p^{-1}+p^{-2}} \cdot \prod_{i=1}^{s} \frac{1-\frac{1}{1+p_i^{-1}+p_i^{-2}}}{\frac{1}{1+p_i^{-1}+p_i^{-2}}} = \prod_{p \leqslant P} \frac{1}{1+p^{-1}+p^{-2}} \cdot \prod_{i=1}^{s} \frac{1+p_i^{-1}}{p_i}.$$

Hence, K is unramified at exactly s primes $p \leq P$ with probability

$$\prod_{p \leq P} \frac{1}{1 + p^{-1} + p^{-2}} \cdot \sum_{p_1 < \dots < p_s \leq P} \prod_{i=1}^s \frac{1 + p_i^{-1}}{p_i}$$

$$\leq \left(\prod_{p \leq P} \frac{1}{1 + p^{-1} + p^{-2}}\right) \cdot \left(\sum_{p \leq P} \frac{1 + p^{-1}}{p}\right)^s \tag{1}$$

For large P, we have

$$\prod_{p \le P} (1 + p^{-1} + p^{-2}) \asymp \prod_{p \le P} \frac{1}{1 - p^{-1}} \asymp \log P$$

and

$$\sum_{p \leqslant P} \frac{1+p^{-1}}{p} \asymp \sum_{p \leqslant P} \frac{1}{p} \asymp \log \log P,$$

so the upper bound in (1) goes to 0 as $P \to \infty$.