Math 286X: Arithmetic Statistics

$$
\text { Spring } 2020
$$

Problem set \#7

Problem 1. Let K be any field and $n \geqslant 3$. Consider the action of $\mathrm{PGL}_{n-1}(K)=$ $\mathrm{GL}_{n-1}(K) / K^{\times}$on the projective space $\mathbb{P}^{n-2}(K)=K^{n-1} / K^{\times}$given by $[M] .[v]=[M v]$ for $M \in \mathrm{GL}_{n-1}(K)$ and $v \in K^{n-1}$. We say that n points $P_{1}, \ldots, P_{n} \in \mathbb{P}^{n-2}(K)$ are in general position if any $n-1$ of the points span $\mathbb{P}^{n-2}(K)$. (For $n=3$, this simply means that the three points $P_{1}, P_{2}, P_{3} \in \mathbb{P}^{1}(K)$ are distinct.)
a) Show that for any n points $P_{1}, \ldots, P_{n} \in \mathbb{P}^{n-2}(K)$ in general position and any n points $Q_{1}, \ldots, Q_{n} \in \mathbb{P}^{n-2}(K)$ in general position, there is exactly one $g \in \mathrm{PGL}_{n-1}(K)$ such that $g P_{i}=Q_{i}$ for all $i=1, \ldots, n$. (In other words, $\mathrm{PGL}_{n-1}(K)$ acts simply transitively on the set of n-tuples of points in $\mathbb{P}^{n-2}(K)$ in general position.)

Solution. It suffices to prove this for $P_{1}=[1: 0: \cdots: 0], \ldots, P_{n-1}=$ $[0: \cdots: 0: 1], P_{n}=[1: \cdots: 1]$. Let $Q_{i}=\left[v_{i}\right]$ with $v_{i} \in K^{n-1}$. Write $g=[M]$, where $M \in \mathrm{GL}_{n-1}(K)$ has columns $w_{1}, \ldots, w_{n-1} \in K^{n-1}$. We have $g P_{i}=Q_{i}$ for all i if and only if $\left[w_{i}\right]=\left[v_{i}\right]$ for $i=1, \ldots, n-1$ and $\left[w_{1}+\cdots+w_{n-1}\right]=\left[v_{n}\right]$. The first $n-1$ conditions can be written as $w_{i}=\lambda_{i} v_{i}$ with $\lambda_{i} \in K^{\times}$. The last condition then means that $\left[\lambda_{1} v_{1}+\right.$ $\left.\cdots+\lambda_{n-1} v_{n-1}\right]=\left[v_{n}\right]$. Scaling the matrix M by an element of K^{\times}, we can assume $\lambda_{1} v_{1}+\cdots+\lambda_{n-1} v_{n-1}=v_{n}$. Since v_{1}, \ldots, v_{n-1} form a basis of K^{n-1}, there are unique $\lambda_{1}, \ldots, \lambda_{n-1} \in K$ satisfying this equation. Since any $n-1$ of the points v_{1}, \ldots, v_{n} are linearly independent, we in fact have $\lambda_{i} \neq 0$ for all i. Since v_{1}, \ldots, v_{n-1} are linearly independent, the resulting (unique) matrix M lies in $\mathrm{GL}_{n-1}(K)$.
b) Consider the action of $\mathrm{PGL}_{n-1}(K)$ on the set of sets X of n points in $\mathbb{P}^{n-1}(K)$ in general position. Show that the stabilizer of any such set X is isomorphic to S_{n}.

Solution. By a), there is exactly one element of $\mathrm{PGL}_{n-1}(K)$ for any permutation of the n points.

Problem 2. Consider the trivial cubic extension $S=\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ of \mathbb{Z}. Find all cubic subextensions $S^{\prime} \subset S$ of \mathbb{Z} of index $\left[S: S^{\prime}\right] \in\left\{p, p^{2}, p^{3}\right\}$, where p is prime.
Hint: Use the appropriate normal form
Solution. The trivial extension S of \mathbb{Z} corresponds to the cubic form $f(X, Y)=$ $X Y(Y-X) \in \mathcal{V}(\mathbb{Z})$. The cubic subextensions $S^{\prime} \subseteq S$ correspond to orbits $\mathrm{GL}_{2}(\mathbb{Z}) M$ in $\mathrm{GL}_{2}(\mathbb{Z}) \backslash\left(M_{2}(\mathbb{Z}) \cap \mathrm{GL}_{2}(\mathbb{Q})\right)$ such that $M . f \in \mathcal{V}(\mathbb{Z})$. Each such orbit contains exactly one matrix M in Hermite normal form: $M=\left(\begin{array}{cc}a_{1} & b \\ 0 & a_{2}\end{array}\right)$ for $1 \leqslant a_{1}, a_{2} \in \mathbb{Z}$ and $b \in\left\{0, \ldots, a_{2}-1\right\}$. The index is $\left[S: S^{\prime}\right]=a_{1} a_{2}$. We have

$$
\begin{aligned}
M \cdot f(X, Y) & =\frac{\left(a_{1} X\right)\left(b X+a_{2} Y\right)\left(b X+a_{2} Y-a_{1} X\right)}{a_{1} a_{2}} \\
& =\frac{-a_{1} b+b^{2}}{a_{2}} \cdot X^{3}+\left(-a_{1}+2 b\right) \cdot X^{2} Y+a_{2} X Y^{2}
\end{aligned}
$$

so $M . f \in \mathcal{V}(\mathbb{Z})$ if and only if $a_{2} \mid b\left(b-a_{1}\right)$.
Hence, subextensions of index d are in bijection with triples $\left(a_{1}, a_{2}, b\right)$ with $a_{1}, a_{2} \geqslant 1,0 \leqslant b \leqslant a_{2}-1, a_{1} \cdot a_{2}=d$, and $a_{2} \mid b\left(b-a_{1}\right)$.
For $d=p$, the three possible triples are $(p, 1,0),(1, p, 0),(1, p, 1)$. They correspond to the subextensions $\{(x, y, z) \mid x \equiv y \bmod p\},\{x \equiv z \bmod p\}$, $\{y \equiv z \bmod p\}$.
For $d=p^{2}$, the four possible triples are $\left(p^{2}, 1,0\right),(p, p, 0),\left(1, p^{2}, 0\right),\left(1, p^{2}, 1\right)$. They correspond to the subextensions $\left\{x \equiv y \bmod p^{2}\right\},\left\{x \equiv z \bmod p^{2}\right\}$, $\left\{y \equiv z \bmod p^{2}\right\},\{x \equiv y \equiv z \bmod p\}$.
For $d=p^{3}$, the $p+4$ possible triples are $\left(p^{3}, 1,0\right),\left(p^{2}, p, 0\right),\left(1, p^{3}, 0\right)$, $\left(1, p^{3}, 1\right),\left(p, p^{2}, b\right)$ with $b=0, p, \ldots, p(p-1)$. They correspond to the subextensions $\left\{x \equiv y \bmod p^{3}\right\},\left\{x \equiv z \bmod p^{3}\right\},\left\{y \equiv z \bmod p^{3}\right\},\{x \equiv y \equiv z$ $\bmod p$ and $\left.a(x-y)+b(x-z) \equiv 0 \bmod p^{2}\right\}$ for $[a: b] \in \mathbb{P}^{1}\left(\mathbb{F}_{p}\right)$.

Definition. We call a degree n extension S of a Dedekind domain R monogenic if the R-algebra S is generated by one element: $S=R[\alpha]$ for some $\alpha \in S$.

Problem 3. a) Show that the trivial degree n extension $S=\mathbb{Z}_{p} \times \cdots \times \mathbb{Z}_{p}$ of \mathbb{Z}_{p} is monogenic if and only if $n \leqslant p$.

Solution. An element $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in S$ generates S if and only if the matrix $M=\left(\alpha_{i}^{j}\right)_{1 \leqslant i \leqslant n, 0 \leqslant j \leqslant n-1} \in M_{n}\left(\mathbb{Z}_{p}\right)$ with columns $1, \alpha, \ldots, \alpha^{n-1}$
is invertible. It determinant is $\pm \prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)$, which is invertible if and only if the residues $\alpha_{i} \bmod p$ for $i=1, \ldots, n$ are distinct. Of course, that's possible if and only if $n \leqslant p$.
b) Let K be a degree n field extension of \mathbb{Q} in which some (unramified) prime $p<n$ splits completely. Show that the extension \mathcal{O}_{K} of \mathbb{Z} is not monogenic.

Solution. The prime p splits completely if and only if $K \otimes_{\mathbb{Q}} \mathbb{Q}_{p} \cong$ $\mathbb{Q}_{p} \times \cdots \times \mathbb{Q}_{p}$. This means that $\mathcal{O}_{K} \otimes_{\mathbb{Z}} \mathbb{Z}_{p}$ is (isomorphic to) the ring of integers $\mathbb{Z}_{p} \times \cdots \times \mathbb{Z}_{p}$, which according to a) is not monogenic. Hence, \mathcal{O}_{K} is not monogenic.
c) Show that for any $n \geqslant 1$ and any prime number p, there is a degree n field extension of \mathbb{Q} in which the (unramified) prime p splits completely.

Solution. Consider the monic degree n polynomial $f(X)=\prod_{i=1}^{n}(X-$ $i)$. Choose e large enough so that $e>2 v_{p}\left(f^{\prime}(i)\right)$ for $i=1, \ldots, n$. Also, choose a prime $q \neq p$. By the Chinese remainder theorem, there is a monic degree n polynomial $g(X) \in \mathbb{Z}[X]$ such that $g(X) \equiv f(X)$ $\bmod p^{e}$ and $g(X) \equiv X^{n}+q \bmod q^{2}$. The second condition shows that $g(X)$ is an Eisenstein polynomial at q and therefore irreducible. The first condition shows that $g(i) \equiv 0 \bmod p^{e}$ and $v_{p}\left(g^{\prime}(i)\right)=v_{p}\left(f^{\prime}(i)\right)$ for $i=1, \ldots, n$. By Hensel's lemma, this implies that each $i=1, \ldots, n$ lifts modulo p^{e} to a unique root in \mathbb{Z}_{p}. Furthermore, it implies that $i \not \equiv j \bmod p^{e}$ for any $i \neq j$ with $1 \leqslant i, j \leqslant n$. In particular, $g(X)$ splits completely into n distinct linear factors. Therefore, $K=\mathbb{Q}[X] /(g(X))$ is a degree n field extension of \mathbb{Q} in which p splits completely.

Problem 4. Let R be a principal ideal domain and let the cubic form $f(X, Y)=a X^{3}+b X^{2} Y+c X Y^{2}+d Y^{3} \in \mathcal{V}(R)$ correspond to the cubic extension S of R with basis $\left(1, \omega_{1}, \omega_{2}\right)$.
a) Show that $S=R\left[\omega_{1}\right]$ if and only if $a \in R^{\times}$.

Solution. By construction, we have $\omega_{1}^{2}=-a c-b \omega_{1}+a \omega_{2}$. Hence, $1, \omega_{1}, \omega_{1}^{2}$ forms a basis of $S=\left\langle 1, \omega_{1}, \omega_{2}\right\rangle_{R}$ if and only if the matrix

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-a c & -b & a
\end{array}\right)
$$

is invertible over R, which is equivalent to $a \in R^{\times}$.
b) Show that S is monogenic if and only if $f(x, y) \in R^{\times}$for some $x, y \in R$.

Solution. If $f(x, y) \in R^{\times}$, then x, y are in particular relatively prime. This implies there is a matrix $M \in \mathrm{GL}_{2}(R)$ of the form $\binom{x y}{x_{*}^{*}}$. By definition, $M . f(X, Y)=a^{\prime} X^{3}+\cdots+d^{\prime} Y^{3}$ satisfies $a^{\prime}=(M . f)(1,0)=$ $f(x, y) / \operatorname{det}(M) \in R^{\times}$. But f corresponds to the same cubic extension as $M . f$, which is monogenic by part a).
Conversely, if S is monogenic, then there is some $\omega_{1}^{\prime} \in S$ such that $1, \omega_{1}^{\prime}, \omega_{1}^{\prime 2}$ is a basis of S. By part a), this shows that there is a base change matrix $M \in \mathrm{GL}_{2}(R)$ such that $M . f(X, Y)=a^{\prime} X^{3}+\cdots+d^{\prime} Y^{3}$ satisfies $a^{\prime} \in R^{\times}$. If the first row of M is $\left(\begin{array}{ll}x & y\end{array}\right)$, it follows as above that $f(x, y) \in R^{\times}$.

Problem 5. Order the cubic field extensions $K \mid \mathbb{Q}$ by $\left|D_{K}\right|$.
a) Show that a random K is totally real with probability $1 / 4$.

Solution. Let $E=\mathbb{R} \times \mathbb{R} \times \mathbb{R}$ or $E=\mathbb{R} \times \mathbb{C}$. If you look back at the computation of the number of cubic field extensions $K \mid \mathbb{Q}$ with $\left|D_{K}\right| \leqslant T$ (in particular the computation of the volume of a fundamental domain), you realize that $K \otimes_{\mathbb{Q}} \mathbb{R} \cong E$ with probability proportional to $\frac{1}{\# \operatorname{Aut}_{\mathbb{R}}(E)}$. We have $\# \operatorname{Aut}(\mathbb{R} \times \mathbb{R} \times \mathbb{R})=6$ and $\# \operatorname{Aut}(\mathbb{R} \times \mathbb{C})=2$. Hence, $K \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ with probability $\frac{1 / 6}{1 / 6+1 / 2}=\frac{1}{4}$.
b) For a fixed prime number p, show that a random K is unramified at p with probability $1 /\left(1+p^{-1}+p^{-2}\right)$.

Solution. The computation of $\operatorname{vol}\left(\mathcal{V}^{\max }\left(\mathbb{Z}_{p}\right)\right)$ in class shows that for a fixed nondegenerate cubic extension L of \mathbb{Q}_{p}, we have $K \otimes_{\mathbb{Q}} \mathbb{Q}_{p} \cong L$ with probability proportional to $\frac{\left|D_{L \mid Q}\right|}{\text { \#Aut }(L)}$. We have shown that

$$
\sum_{L \text { nondeg. cubic ext. of } \mathbb{Q}_{p}} \frac{\left|D_{L \mid \mathbb{Q}}\right|}{\# \operatorname{Aut}(K)}=1+p^{-1}+p^{-2},
$$

so the probability is

$$
\frac{\frac{\left|D_{L \mid \mathbb{Q}}\right|}{\# \operatorname{Aut}(L)}}{1+p^{-1}+p^{-2}}
$$

We have furthermore shown in class that (cf. extensions of finite field)

$$
\sum_{k \text { nondeg. cubic ext. of } \mathbb{F}_{p}} \frac{1}{\# \operatorname{Aut}(k)}=1 .
$$

By the correspondence between unramified extensions of a local field and extensions of its residue field, it follows that

$$
\sum_{L \text { unram. nondeg. cubic ext. of } \mathbb{Q}_{p}} \frac{1}{\# \operatorname{Aut}(L)}=1
$$

c) For a fixed prime number p, consider only those K which are unramified at p. Fix a partition $n=k_{1}+\cdots+k_{r}$. Show that the (conditional) probability that K has splitting type $\left(k_{1}, \ldots, k_{r}\right)$ at p equals the probability that a random $\pi \in S_{n}$ has cycle type $\left(k_{1}, \ldots, k_{r}\right)$.

Solution. We have shown in class that (cf. extensions of finite fields)

$$
\frac{1}{\# \operatorname{Aut}\left(\mathbb{F}_{p^{k_{1}}} \times \cdots \times \mathbb{F}_{p^{k_{r}}}\right)}=\mathbb{P}\left(\pi \text { has cycle type }\left(k_{1}, \ldots, k_{r}\right) \mid \pi \in S_{n}\right)
$$

The result again follows from the correspondence between unramified extensions of a local field and extensions of its residue field.
d) For a fixed prime number p, show that a random K is totally ramified at p with probability $1 /\left(1+p+p^{2}\right)$.

Solution. We have shown in class that (cf. Serre's mass formula)

$$
\sum_{L \text { tot. ram. field ext. of } \mathbb{Q}_{p}} \frac{\left|D_{L \mid \mathbb{Q}_{p}}\right|}{\# \operatorname{Aut}(L)}=p^{-2}
$$

so the probability is $\frac{p^{-2}}{1+p^{-1}+p^{-2}}=1 /\left(1+p+p^{2}\right)$.
e) Fix some $s \geqslant 0$. Show that a random K is ramified at only s primes with probability zero (just like a random integer is only divisible by s primes with probability zero).

Solution. Fix some $P \geqslant 2$ and some primes $p_{1}<\cdots<p_{s} \leqslant P$. The same sieve as in class and the argument from b) shows that that K is ramified at p_{1}, \ldots, p_{s}, but at no other primes $p \leqslant P$ with probability

$$
\prod_{p \leqslant P} \frac{1}{1+p^{-1}+p^{-2}} \cdot \prod_{i=1}^{s} \frac{1-\frac{1}{1+p_{i}^{-1}+p_{i}^{-2}}}{\frac{1}{1+p_{i}^{-1}+p_{i}^{-2}}}=\prod_{p \leqslant P} \frac{1}{1+p^{-1}+p^{-2}} \cdot \prod_{i=1}^{s} \frac{1+p_{i}^{-1}}{p_{i}}
$$

Hence, K is unramified at exactly s primes $p \leqslant P$ with probability

$$
\begin{align*}
& \prod_{p \leqslant P} \frac{1}{1+p^{-1}+p^{-2}} \cdot \sum_{p_{1}<\cdots<p_{s} \leqslant P} \prod_{i=1}^{s} \frac{1+p_{i}^{-1}}{p_{i}} \\
& \leqslant\left(\prod_{p \leqslant P} \frac{1}{1+p^{-1}+p^{-2}}\right) \cdot\left(\sum_{p \leqslant P} \frac{1+p^{-1}}{p}\right)^{s} \tag{1}
\end{align*}
$$

For large P, we have

$$
\prod_{p \leqslant P}\left(1+p^{-1}+p^{-2}\right) \asymp \prod_{p \leqslant P} \frac{1}{1-p^{-1}} \asymp \log P
$$

and

$$
\sum_{p \leqslant P} \frac{1+p^{-1}}{p}=\sum_{p \leqslant P} \frac{1}{p}=\log \log P,
$$

so the upper bound in (1) goes to 0 as $P \rightarrow \infty$.

