
Math 286X: Arithmetic Statistics

Spring 2020

Problem set #6

Problem 1. Let n ě 1.

a) Show that, up to isomorphism, there are exactly tn2 u ` 1 degree n
extensions K of R.

Solution. In class, we counted degree n extensions of a finite field Fq
using the fact that Fq has exactly one field extension of any given
degree. In this problem, we use the same method over R, which has
only the two field extensions R and C.

The degree n extensions are exactly the products of the form Ck ˆ
Rn´2k with 0 ď k ď tn2 u.

b) ([Bha07, Proposition 2.4]) Show that

ÿ

degree n
extension K|R

1

# AutRpKq
“

tn
2

u
ÿ

k“0

1

2k ¨ k!pn´ 2kq!
“ Ppπ2 “ id | π P Snq.

Solution. The extension Ck ˆRn´2k has exactly 2k ¨ k!pn´ 2kq! auto-
morphisms. (The automorphism group is generated by complex conju-
gation on the complex factors, permutation of the complex factors, and
permutation of the real factors. It is isomorphic to pC2 oSkq ˆSn´2k.)
We have seen that the probability that a random π P Sn consists of k
two-cycles and n´2k one-cycles is 1

2k¨k!pn´2kq!
. It only remains to note

that a permutation π satisfies π2 “ id if and only if it consists only of
two-cycles and one-cycles.

Problem 2. Let K be a nonarchimedean local field with prime ideal p and
residue field Fq.

a) Show that
ş

OK
|x|dx “ 1´ 1

q`1 .
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Solution. Since OK “ OˆK \ πOK , we have (using the change of vari-
ables formula for y ÞÑ x “ πy and the fact that |π| “ q´1):

ż

OK

|x|dx “

ż

OˆK
|x|dx`

ż

πOK

|x|dx

“

ż

OˆK
1dx`

ż

OK

|πy| ¨ |π|dy

“ p1´ q´1q ` q´2 ¨

ż

OK

|x|dx.

This implies that

ż

OK

|x|dx “
1´ q´1

1´ q´2
“

1

1` q´1
“ 1´

1

q ` 1
.

(Alternatively, just write OK “
Ů

kě0 π
kOˆK and note that |x| is the

constant q´k on the set πkOˆK of measure q´kp1´ q´1q.)

b) Let fpXq P OKrXs be a polynomial such that f 1pXq mod p has k
simple roots in Fq and no roots of higher multiplicity in Fq. For any
y P OK , let mpyq be the number of x P OK such that fpxq “ y. Show
that

ż

OK

mpyqdy “ 1´
k

q ` 1
.

(This is the expected number of preimages of a random element y P OK

under the map f : OK Ñ OK .)

Solution. By Hensel’s lemma, we can write f 1pXq “ pX ´ a1q ¨ ¨ ¨ pX ´
akq ¨ gpXq mod p, where a1, . . . , ak P OK are distinct and gpXq P
OKrXs is a polynomial with no roots modulo p. Note that vppgpxqq “
0, so vppf

1pxqq “
ř

i vppx ´ aiq for any x P OK . Also note that, since
ai ı aj mod p for all i ‰ j, at most one of the numbers vppx ´ aiq
can be nonzero for any x P OK . In other words, we have |f 1pxq| “
ś

i |x ´ ai|, and at most one of the numbers |x ´ ai| is not 1. This
implies that |f 1pxq| “

ś

i |x ´ ai| “ 1 ´
ř

ip1 ´ |x ´ ai|q. Changing
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variables, we have

ż

OK

mpyqdy “

ż

OK

|f 1pxq|dx

“

ż

OK

p1´
ÿ

i

p1´ |x´ ai|qqdx

“

ż

OK

dx´
ÿ

i

ż

OK

p1´ |x´ ai|qdx

By part a) and
ş

OK
dx “ 1, this is

1´
ÿ

i

1

q ` 1
“ 1´

k

q ` 1
.

Problem 3 ([Ser78, Section 4]). Let K be a local field with normalized
valuation vK and let n ě 1.

a) Show that the discriminant of an Eisenstein polynomial fpXq “ anX
n`

an´1X
n´1 ` ¨ ¨ ¨ ` a0 P OKrXs with an “ 1 satisfies

vKpdiscpfqq “ min
1ďiďn

pi´ 1` nvKpiaiqq.

Solution. Let π be a root of fpXq. We have

discpfq “ ˘NmKpπq|Kpf
1pπqq,

so, denoting the extension of vK to Kpπq also by vK , we get

vKpdiscpfqq “ n ¨ vKpf
1pπqq “ n ¨ vK

ˆ n
ÿ

i“1

iaiπ
i´1

˙

.

Since vKpπq “
1
n , no two of the valuations vKpiaiπ

i´1q “ vKpiaiq `
i´1
n P Z ` i´1

n are the same. Hence, the valuation of the sum is
min1ďiďnpvKpiaiq `

i´1
n q, so

vKpdiscpfqq “ min
1ďiďn

pnvKpiaiq ` i´ 1q.

b) Show that K has infinitely many separable totally ramified field ex-
tensions of degree n if and only if charpKq | n.
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Solution. Let charpKq - n. By part a), we have vKpdiscpfqq ď nvKpnq`
n´1 ă 8 for any monic Eisenstein polynomial fpXq “ Xn`an´1X

n´1`

¨ ¨ ¨`a0 P OK . This implies that separable totally ramified field exten-
sions L of degree n have bounded discriminant. Therefore, in Serre’s
mass formula

ÿ

LĂKsep

tot. ram.
of deg. n

|DL|K | “
1

qn´1
,

the summands are bounded from below by a positive constant. Hence,
there are only finitely many summands.

On the other hand, if charpKq | n, then nvKpnq`n´1 “ 8, so the dis-
criminant of a monic Eisenstein polynomial fpXq “ Xn`an´1X

n´1`

¨ ¨ ¨ ` a0 P OK satisfies vKpdiscpfqq “ min1ďiďn´1pnvKpiaiq ` i ´ 1q.
By choosing a1, . . . , an´1 ‰ 0 of sufficiently high valuation, we can
make vKpdiscpfqq arbitrarily large (but finite). Hence, there are in-
finitely many possible discriminants, and in particular infinitely many
separable totally ramified extensions.

c) Show that K has infinitely many field extensions of degree n if and
only if charpKq | n.

Solution. Let charpKq - n. Any degree n extension L of K has a
maximal unramified subextension F . Then, L is a totally ramified
extension of F . There are only finitely many unramified extensions
F of K of degree dividing n (one for each degree). By part a), any
such extension F has only finitely many totally ramified extensions of
degree n{rF : Ks.

d) (bonus) Let d ě 0. Show that K has a totally ramified field extension
L of degree n with vKpDL|Kq “ d if and only if

n ¨ vKplq ď d´ n` 1 ď n ¨ vKpnq,

where 1 ď l ď n with l ” d` 1 mod n.

Solution. Let us compute the possible values of bipfq “ i´1`nvKpiaiq
for each i, where fpXq “ anX

n`¨ ¨ ¨`a0 is a monic Eisenstein polyno-
mial as in part a). For i “ n, we always have bipfq “ n´ 1` nvKpnq.
For 1 ď i ď n ´ 1, the set of possible values for bipfq is ti ´ 1 `
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nvKpiq ` n ¨ t | t P Z, t ě 1u. Since bipfq only depends on ai, we can
choose b1pfq, . . . , bnpfq independently. Since bipfq ” i´ 1 mod n, we
have d “ vKpdiscpfqq “ min1ďiďn bipfq if and only if d “ blpfq ď bipfq
for all i. It is easy to see that this can be arranged if and only if
n ¨ vKplq ď d´ n` 1 ď n ¨ vKpnq.

e) (bonus) Compute the number of totally ramified field extensions L Ă
Ksep of K of degree n with vKpDL|Kq “ d.

Solution. Assume that the condition in d) is satisfied, so there is at
least one such extension.

Let Pn,d Ă On
K be the set of monic degree n Eisenstein polynomials

such that vKpdiscpfqq “ d. As in the proof of Serre’s mass formula
discussed in class, it follows that

ÿ

LĂKsep

tot. ram.
of deg. n

with vKpDL|Kq“d

q´1p1´ q´1q|DL|K | “ n ¨ volpPn,dq.

Note that |DL|K | “ q´vKpDL|Kq “ q´d, so all summands on the left-

hand side are p1 ´ q´1qq´d´1. Staring at a) and d) for a while (see
Serre’s paper), you can show that volpPn,dq “ p1´ q

´1qαq´n´β, where

α “

#

1, d` 1 ” 0 mod n,

q ´ 1, d` 1 ı 0 mod n,

and

β “
n´1
ÿ

i“1

max

ˆ

0,

Z

d` 1´ i

n

^

´ vKpiq

˙

.

Hence, the number of L as above is

αqd´n`1´β.

Problem 4. Let S1 be a degree n1 extension and let S2 be a degree n2
extension of a Dedekind domain R.

a) Show that the tensor product S “ S1bRS2 is a degree n1 ¨n2 extension
of R.
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Solution. The tensor product of finitely generated modules is clearly
finitely generated. The tensor product of torsion-free modules is torsion-
free. The tensor product of vector spaces of dimensions n1, n2 is a
vector space of dimension n1 ¨ n2.

b) Show that discpS|Rq “ discpS1|Rq
n2 ¨ discpS2|Rq

n1 . (Hint: Look up
the discriminant of a Kronecker product of matrices or the proof of
Proposition I.2.11 in [Neu99]. First show the claim for principal ideal
domains R. )

Solution. If R is a principal ideal domain, then S1, S2 are free R-
modules, so they have R-bases pωiq1ďiďn1 and pθi1q1ďi1ďn2 . Then, S “
S1bS2 has R-basis pωiθi1q1ďiďn1, 1ďi1ďn2 . The discriminants of S1, S2,
S are the ideals generated by the determinants of A1 “ pTrpωiωjqqi,j ,
A2 “ pTrpθi1θj1qqi1,j1 , A “ pTrpωiωjθi1θj1qqpi,i1q,pj,j1q. The third ma-
trix A is the Kronecker product of the first two matrices A1 and A2.
Therefore, we have detpAq “ detpA1q

n2 detpA2q
n1 , proving the claim.

For general Dedekind domains R, it suffices to show that two sides of
the claimed equality are divisible by any (nonzero) prime ideal p of R
the same number of times. To prove this, we can base change to the
localization of R at p (or to its completion at p if you prefer), which
is a principal ideal domain.
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