Math 286X: Arithmetic Statistics

Spring 2020

Problem set \#6

Problem 1. Let $n \geqslant 1$.
a) Show that, up to isomorphism, there are exactly $\left\lfloor\frac{n}{2}\right\rfloor+1$ degree n extensions K of \mathbb{R}.

Solution. In class, we counted degree n extensions of a finite field \mathbb{F}_{q} using the fact that \mathbb{F}_{q} has exactly one field extension of any given degree. In this problem, we use the same method over \mathbb{R}, which has only the two field extensions \mathbb{R} and \mathbb{C}.
The degree n extensions are exactly the products of the form $\mathbb{C}^{k} \times$ $\mathbb{R}^{n-2 k}$ with $0 \leqslant k \leqslant\left\lfloor\frac{n}{2}\right\rfloor$.
b) (Bha07, Proposition 2.4]) Show that

$$
\sum_{\substack{\text { degree } n \\ \text { extension } K \mid \mathbb{R}}} \frac{1}{\# \operatorname{Aut}_{\mathbb{R}}(K)}=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{1}{2^{k} \cdot k!(n-2 k)!}=\mathbb{P}\left(\pi^{2}=\mathrm{id} \mid \pi \in S_{n}\right) .
$$

Solution. The extension $\mathbb{C}^{k} \times \mathbb{R}^{n-2 k}$ has exactly $2^{k} \cdot k!(n-2 k)$! automorphisms. (The automorphism group is generated by complex conjugation on the complex factors, permutation of the complex factors, and permutation of the real factors. It is isomorphic to $\left(C_{2} \imath S_{k}\right) \times S_{n-2 k}$.) We have seen that the probability that a random $\pi \in S_{n}$ consists of k two-cycles and $n-2 k$ one-cycles is $\frac{1}{2^{k} \cdot k!(n-2 k)!}$. It only remains to note that a permutation π satisfies $\pi^{2}=$ id if and only if it consists only of two-cycles and one-cycles.

Problem 2. Let K be a nonarchimedean local field with prime ideal \mathfrak{p} and residue field \mathbb{F}_{q}.
a) Show that $\int_{\mathcal{O}_{K}}|x| \mathrm{d} x=1-\frac{1}{q+1}$.

Solution. Since $\mathcal{O}_{K}=\mathcal{O}_{K}^{\times} \sqcup \pi \mathcal{O}_{K}$, we have (using the change of variables formula for $y \mapsto x=\pi y$ and the fact that $|\pi|=q^{-1}$):

$$
\begin{aligned}
\int_{\mathcal{O}_{K}}|x| \mathrm{d} x & =\int_{\mathcal{O}_{K}^{\times}}|x| \mathrm{d} x+\int_{\pi \mathcal{O}_{K}}|x| \mathrm{d} x \\
& =\int_{\mathcal{O}_{K}^{\times}} 1 \mathrm{~d} x+\int_{\mathcal{O}_{K}}|\pi y| \cdot|\pi| \mathrm{d} y \\
& =\left(1-q^{-1}\right)+q^{-2} \cdot \int_{\mathcal{O}_{K}}|x| \mathrm{d} x .
\end{aligned}
$$

This implies that

$$
\int_{\mathcal{O}_{K}}|x| \mathrm{d} x=\frac{1-q^{-1}}{1-q^{-2}}=\frac{1}{1+q^{-1}}=1-\frac{1}{q+1} .
$$

(Alternatively, just write $\mathcal{O}_{K}=\bigsqcup_{k \geqslant 0} \pi^{k} \mathcal{O}_{K}^{\times}$and note that $|x|$ is the constant q^{-k} on the set $\pi^{k} \mathcal{O}_{K}^{\times}$of measure $q^{-k}\left(1-q^{-1}\right)$.)
b) Let $f(X) \in \mathcal{O}_{K}[X]$ be a polynomial such that $f^{\prime}(X) \bmod \mathfrak{p}$ has k simple roots in \mathbb{F}_{q} and no roots of higher multiplicity in \mathbb{F}_{q}. For any $y \in \mathcal{O}_{K}$, let $m(y)$ be the number of $x \in \mathcal{O}_{K}$ such that $f(x)=y$. Show that

$$
\int_{\mathcal{O}_{K}} m(y) \mathrm{d} y=1-\frac{k}{q+1} .
$$

(This is the expected number of preimages of a random element $y \in \mathcal{O}_{K}$ under the map $f: \mathcal{O}_{K} \rightarrow \mathcal{O}_{K}$.)

Solution. By Hensel's lemma, we can write $f^{\prime}(X)=\left(X-a_{1}\right) \cdots(X-$ $\left.a_{k}\right) \cdot g(X) \bmod \mathfrak{p}$, where $a_{1}, \ldots, a_{k} \in \mathcal{O}_{K}$ are distinct and $g(X) \in$ $\mathcal{O}_{K}[X]$ is a polynomial with no roots modulo \mathfrak{p}. Note that $v_{p}(g(x))=$ 0 , so $v_{p}\left(f^{\prime}(x)\right)=\sum_{i} v_{p}\left(x-a_{i}\right)$ for any $x \in \mathcal{O}_{K}$. Also note that, since $a_{i} \not \equiv a_{j} \bmod \mathfrak{p}$ for all $i \neq j$, at most one of the numbers $v_{p}\left(x-a_{i}\right)$ can be nonzero for any $x \in \mathcal{O}_{K}$. In other words, we have $\left|f^{\prime}(x)\right|=$ $\prod_{i}\left|x-a_{i}\right|$, and at most one of the numbers $\left|x-a_{i}\right|$ is not 1 . This implies that $\left|f^{\prime}(x)\right|=\prod_{i}\left|x-a_{i}\right|=1-\sum_{i}\left(1-\left|x-a_{i}\right|\right)$. Changing
variables, we have

$$
\begin{aligned}
\int_{\mathcal{O}_{K}} m(y) \mathrm{d} y & =\int_{\mathcal{O}_{K}}\left|f^{\prime}(x)\right| \mathrm{d} x \\
& =\int_{\mathcal{O}_{K}}\left(1-\sum_{i}\left(1-\left|x-a_{i}\right|\right)\right) \mathrm{d} x \\
& =\int_{\mathcal{O}_{K}} \mathrm{~d} x-\sum_{i} \int_{\mathcal{O}_{K}}\left(1-\left|x-a_{i}\right|\right) \mathrm{d} x
\end{aligned}
$$

By part a) and $\int_{\mathcal{O}_{K}} \mathrm{~d} x=1$, this is

$$
1-\sum_{i} \frac{1}{q+1}=1-\frac{k}{q+1} .
$$

Problem 3 ([Ser78, Section 4]). Let K be a local field with normalized valuation v_{K} and let $n \geqslant 1$.
a) Show that the discriminant of an Eisenstein polynomial $f(X)=a_{n} X^{n}+$ $a_{n-1} X^{n-1}+\cdots+a_{0} \in \mathcal{O}_{K}[X]$ with $a_{n}=1$ satisfies

$$
v_{K}(\operatorname{disc}(f))=\min _{1 \leqslant i \leqslant n}\left(i-1+n v_{K}\left(i a_{i}\right)\right) .
$$

Solution. Let π be a root of $f(X)$. We have

$$
\operatorname{disc}(f)= \pm \operatorname{Nm}_{K(\pi) \mid K}\left(f^{\prime}(\pi)\right)
$$

so, denoting the extension of v_{K} to $K(\pi)$ also by v_{K}, we get

$$
v_{K}(\operatorname{disc}(f))=n \cdot v_{K}\left(f^{\prime}(\pi)\right)=n \cdot v_{K}\left(\sum_{i=1}^{n} i a_{i} \pi^{i-1}\right) .
$$

Since $v_{K}(\pi)=\frac{1}{n}$, no two of the valuations $v_{K}\left(i a_{i} \pi^{i-1}\right)=v_{K}\left(i a_{i}\right)+$ $\frac{i-1}{n} \in \mathbb{Z}+\frac{i-1}{n}$ are the same. Hence, the valuation of the sum is $\min _{1 \leqslant i \leqslant n}\left(v_{K}\left(i a_{i}\right)+\frac{i-1}{n}\right)$, so

$$
v_{K}(\operatorname{disc}(f))=\min _{1 \leqslant i \leqslant n}\left(n v_{K}\left(i a_{i}\right)+i-1\right) .
$$

b) Show that K has infinitely many separable totally ramified field extensions of degree n if and only if $\operatorname{char}(K) \mid n$.

Solution. Let $\operatorname{char}(K) \nmid n$. By part a), we have $v_{K}(\operatorname{disc}(f)) \leqslant n v_{K}(n)+$ $n-1<\infty$ for any monic Eisenstein polynomial $f(X)=X^{n}+a_{n-1} X^{n-1}+$ $\cdots+a_{0} \in \mathcal{O}_{K}$. This implies that separable totally ramified field extensions L of degree n have bounded discriminant. Therefore, in Serre's mass formula

$$
\sum_{\substack{L \subset K^{\text {sep }} \\ \text { tot. ram. } \\ \text { of deg. } n}}\left|D_{L \mid K}\right|=\frac{1}{q^{n-1}},
$$

the summands are bounded from below by a positive constant. Hence, there are only finitely many summands.
On the other hand, if $\operatorname{char}(K) \mid n$, then $n v_{K}(n)+n-1=\infty$, so the discriminant of a monic Eisenstein polynomial $f(X)=X^{n}+a_{n-1} X^{n-1}+$ $\cdots+a_{0} \in \mathcal{O}_{K}$ satisfies $v_{K}(\operatorname{disc}(f))=\min _{1 \leqslant i \leqslant n-1}\left(n v_{K}\left(i a_{i}\right)+i-1\right)$. By choosing $a_{1}, \ldots, a_{n-1} \neq 0$ of sufficiently high valuation, we can make $v_{K}(\operatorname{disc}(f))$ arbitrarily large (but finite). Hence, there are infinitely many possible discriminants, and in particular infinitely many separable totally ramified extensions.
c) Show that K has infinitely many field extensions of degree n if and only if $\operatorname{char}(K) \mid n$.

Solution. Let char $(K) \nmid n$. Any degree n extension L of K has a maximal unramified subextension F. Then, L is a totally ramified extension of F. There are only finitely many unramified extensions F of K of degree dividing n (one for each degree). By part a), any such extension F has only finitely many totally ramified extensions of degree $n /[F: K]$.
d) (bonus) Let $d \geqslant 0$. Show that K has a totally ramified field extension L of degree n with $v_{K}\left(D_{L \mid K}\right)=d$ if and only if

$$
n \cdot v_{K}(l) \leqslant d-n+1 \leqslant n \cdot v_{K}(n),
$$

where $1 \leqslant l \leqslant n$ with $l \equiv d+1 \bmod n$.

Solution. Let us compute the possible values of $b_{i}(f)=i-1+n v_{K}\left(i a_{i}\right)$ for each i, where $f(X)=a_{n} X^{n}+\cdots+a_{0}$ is a monic Eisenstein polynomial as in part a). For $i=n$, we always have $b_{i}(f)=n-1+n v_{K}(n)$. For $1 \leqslant i \leqslant n-1$, the set of possible values for $b_{i}(f)$ is $\{i-1+$
$\left.n v_{K}(i)+n \cdot t \mid t \in \mathbb{Z}, t \geqslant 1\right\}$. Since $b_{i}(f)$ only depends on a_{i}, we can choose $b_{1}(f), \ldots, b_{n}(f)$ independently. Since $b_{i}(f) \equiv i-1 \bmod n$, we have $d=v_{K}(\operatorname{disc}(f))=\min _{1 \leqslant i \leqslant n} b_{i}(f)$ if and only if $d=b_{l}(f) \leqslant b_{i}(f)$ for all i. It is easy to see that this can be arranged if and only if $n \cdot v_{K}(l) \leqslant d-n+1 \leqslant n \cdot v_{K}(n)$.
e) (bonus) Compute the number of totally ramified field extensions $L \subset$ $K^{\text {sep }}$ of K of degree n with $v_{K}\left(D_{L \mid K}\right)=d$.

Solution. Assume that the condition in d) is satisfied, so there is at least one such extension.
Let $P_{n, d} \subset \mathcal{O}_{K}^{n}$ be the set of monic degree n Eisenstein polynomials such that $v_{K}(\operatorname{disc}(f))=d$. As in the proof of Serre's mass formula discussed in class, it follows that

$$
\sum_{\substack{L \subset K^{\text {sep }} \\ \text { tot ram. } \\ \text { of deg. } \\ \text { h } v_{K}\left(D_{L \mid K}\right)=d}} q^{-1}\left(1-q^{-1}\right)\left|D_{L \mid K}\right|=n \cdot \operatorname{vol}\left(P_{n, d}\right) .
$$

Note that $\left|D_{L \mid K}\right|=q^{-v_{K}\left(D_{L \mid K}\right)}=q^{-d}$, so all summands on the lefthand side are $\left(1-q^{-1}\right) q^{-d-1}$. Staring at a) and d) for a while (see Serre's paper), you can show that $\operatorname{vol}\left(P_{n, d}\right)=\left(1-q^{-1}\right) \alpha q^{-n-\beta}$, where

$$
\alpha=\left\{\begin{array}{lll}
1, & d+1 \equiv 0 & \bmod n, \\
q-1, & d+1 \not \equiv 0 & \bmod n,
\end{array}\right.
$$

and

$$
\beta=\sum_{i=1}^{n-1} \max \left(0,\left\lfloor\frac{d+1-i}{n}\right\rfloor-v_{K}(i)\right) .
$$

Hence, the number of L as above is

$$
\alpha q^{d-n+1-\beta} .
$$

Problem 4. Let S_{1} be a degree n_{1} extension and let S_{2} be a degree n_{2} extension of a Dedekind domain R.
a) Show that the tensor product $S=S_{1} \otimes_{R} S_{2}$ is a degree $n_{1} \cdot n_{2}$ extension of R.

Solution. The tensor product of finitely generated modules is clearly finitely generated. The tensor product of torsion-free modules is torsionfree. The tensor product of vector spaces of dimensions n_{1}, n_{2} is a vector space of dimension $n_{1} \cdot n_{2}$.
b) Show that $\operatorname{disc}(S \mid R)=\operatorname{disc}\left(S_{1} \mid R\right)^{n_{2}} \cdot \operatorname{disc}\left(S_{2} \mid R\right)^{n_{1}}$. (Hint: Look up the discriminant of a Kronecker product of matrices or the proof of Proposition I.2.11 in Neu99. First show the claim for principal ideal domains R.)

Solution. If R is a principal ideal domain, then S_{1}, S_{2} are free R modules, so they have R-bases $\left(\omega_{i}\right)_{1 \leqslant i \leqslant n_{1}}$ and $\left(\theta_{i^{\prime}}\right)_{1 \leqslant i^{\prime} \leqslant n_{2}}$. Then, $S=$ $S_{1} \otimes S_{2}$ has R-basis $\left(\omega_{i} \theta_{i^{\prime}}\right)_{1 \leqslant i \leqslant n_{1}, 1 \leqslant i^{\prime} \leqslant n_{2}}$. The discriminants of S_{1}, S_{2}, S are the ideals generated by the determinants of $A_{1}=\left(\operatorname{Tr}\left(\omega_{i} \omega_{j}\right)\right)_{i, j}$, $A_{2}=\left(\operatorname{Tr}\left(\theta_{i^{\prime}} \theta_{j^{\prime}}\right)\right)_{i^{\prime}, j^{\prime}}, A=\left(\operatorname{Tr}\left(\omega_{i} \omega_{j} \theta_{i^{\prime}} \theta_{j^{\prime}}\right)\right)_{\left(i, i^{\prime}\right),\left(j, j^{\prime}\right)}$. The third ma$\operatorname{trix} A$ is the Kronecker product of the first two matrices A_{1} and A_{2}. Therefore, we have $\operatorname{det}(A)=\operatorname{det}\left(A_{1}\right)^{n_{2}} \operatorname{det}\left(A_{2}\right)^{n_{1}}$, proving the claim.
For general Dedekind domains R, it suffices to show that two sides of the claimed equality are divisible by any (nonzero) prime ideal \mathfrak{p} of R the same number of times. To prove this, we can base change to the localization of R at \mathfrak{p} (or to its completion at \mathfrak{p} if you prefer), which is a principal ideal domain.

References

[Bha07] Manjul Bhargava. "Mass formulae for extensions of local fields, and conjectures on the density of number field discriminants". In: Int. Math. Res. Not. IMRN 17 (2007), Art. ID rnm052, 20. ISSN: 1073-7928. DOI: $10.1093 / i m r n / r n m 052$. URL: https://doi.org/ 10.1093/imrn/rnm052.
[Neu99] Jürgen Neukirch. Algebraic number theory. Vol. 322. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder. Springer-Verlag, Berlin, 1999, pp. xviii +571 . ISBN: 3-540-65399-6. DOI: $10.1007 / 978-3-662-03983-0$, uRL: https: //doi-org.ezp-prod1.hul.harvard.edu/10.1007/978-3-662-03983-0.
[Ser78] Jean-Pierre Serre. "Une "formule de masse" pour les extensions totalement ramifiées de degré donné d'un corps local". In: C. R. Acad. Sci. Paris Sér. A-B 286.22 (1978), A1031-A1036. Issn: 0151-0509.

