Math 286X: Arithmetic Statistics Spring 2020 Problem set #5

Problem 1. Consider a measure-preserving action of a countable group G on a set X. Let $\tilde{\mathcal{F}}$ be a measurable almost fundamental domain for this action, with volume $0 < \operatorname{vol}(\tilde{\mathcal{F}}) < \infty$. Show that the corresponding fundamental domain \mathcal{F} also has volume $0 < \operatorname{vol}(\mathcal{F}) < \infty$.

Solution. The characteristic function $\chi_{\mathcal{F}}$ satisfies $0 < \chi_{\mathcal{F}}(x) \leq 1$ for any $x \in \widetilde{\mathcal{F}}$. This immediately implies the claim.

Step by step: Let A_n be the set of elements x of $\widetilde{\mathcal{F}}$ such that there are exactly n distinct $g \in G$ with $gx \in \widetilde{\mathcal{F}}$. We have seen in class that A_n is measurable. By definition, $\widetilde{\mathcal{F}} = \bigsqcup_{n=1}^{\infty} A_n$ and $\mathcal{F} = \bigsqcup_{n=1}^{\infty} A_n^{\sqcup \frac{1}{n}}$. Hence, $\operatorname{vol}(\widetilde{\mathcal{F}}) = \sum_{n=1}^{\infty} \operatorname{vol}(A_n)$ and $\operatorname{vol}(\mathcal{F}) = \sum_{n=1}^{\infty} \frac{1}{n} \operatorname{vol}(A_n)$. In particular, $\operatorname{vol}(\mathcal{F}) \leq \operatorname{vol}(\widetilde{\mathcal{F}})$. On the other hand, $\operatorname{vol}(\widetilde{\mathcal{F}}) > 0$ implies that $\operatorname{vol}(A_n) > 0$ for some n, so $\operatorname{vol}(\mathcal{F}) > 0$.

Problem 2. Order the full integer lattices $\Lambda \subseteq \mathbb{Z}^n$ by their covolume.

a) Let e_1, \ldots, e_n be the standard basis of \mathbb{Z}^n . Show that

 $\mathbb{P}(e_1 \in \Lambda \mid \Lambda \subseteq \mathbb{Z}^n \text{ full lattice}) = 0.$

Solution. Consider the embedding $\varphi : \mathbb{Z}^{n-1} \hookrightarrow \mathbb{Z}^n$ sending (x_2, \ldots, x_n) to $(0, x_2, \ldots, x_n)$. We obtain a covolume-preserving bijection

{full lattice $\Lambda' \subseteq \mathbb{Z}^{n-1}$ } \longleftrightarrow {full lattice $\Lambda \subseteq \mathbb{Z}^n$ containing e_1 }

sending Λ' to $e_1\mathbb{Z} + \varphi(\Lambda')$. We have seen in class that there are $\approx T^{n-1}$ full lattices $\Lambda' \subseteq \mathbb{Z}^{n-1}$ and that there are $\approx T^n$ full lattices $\Lambda \subseteq \mathbb{Z}^n$ with covolume at most T.

b) Let $\pi : \mathbb{Z}^n \to \mathbb{Z}^{n-1}$ be the projection onto the first n-1 coordinates. Then, $\pi(\Lambda) \subseteq \mathbb{Z}^{n-1}$ is always a full lattice. Show that

$$\mathbb{P}(\pi(\Lambda) = \mathbb{Z}^{n-1} \mid \Lambda \subseteq \mathbb{Z}^n \text{ full lattice}) = \frac{1}{\zeta(2)\cdots\zeta(n)}$$

Solution. A lattice Λ satisfies $\pi(\Lambda) = \mathbb{Z}^{n-1}$ if and only if its Hermite normal form looks like the identity matrix in the first n-1 columns. The number of such matrices in Hermite normal form of determinant at most T is $\sum_{a \leq T} a^{n-1} \sim \frac{1}{n}T^n$. The claim follows, since we have shown that the total number of lattices of covolume at most T is $\sum_{a_1 \cdots a_n \leq T} \prod_{i=1}^n a_i^{i-1} \sim \frac{1}{n}\zeta(2) \cdots \zeta(n)T^n$. \Box

Problem 3 (Mahler's criterion). Equip $\operatorname{GL}_n(\mathbb{Z}) \setminus \operatorname{GL}_n(\mathbb{R})$ with the quotient topology. Let X be a closed subset of $\operatorname{GL}_n(\mathbb{Z}) \setminus \operatorname{GL}_n(\mathbb{R})$. Show that X is compact if and only if there exist $0 < C \leq C' < \infty$ such that the successive minima $\lambda_1 \leq \cdots \leq \lambda_n$ of any lattice Λ corresponding to an element of X satisfy $C \leq \lambda_1 \leq \cdots \leq \lambda_n \leq C'$.

Hint: Use the Iwasawa decomposition and Siegel's almost fundamental domain.

Solution. Use the Iwasawa decomposition $\operatorname{GL}_n(\mathbb{R}) = NAK$ and the fact that any $\operatorname{GL}_n(\mathbb{Z})$ -orbit contains an element in Siegel's almost fundamental domain N'A'K. Let $\pi : \operatorname{GL}_n(\mathbb{R}) \to \operatorname{GL}_n(\mathbb{Z}) \setminus \operatorname{GL}_n(\mathbb{R})$ be the (continuous) projection map. Recall that if g = nak with $n \in N'$, $a \in A'$, $k \in K$ corresponds to the lattice Λ with successive minima $\lambda_1 \leq \cdots \leq \lambda_n$, then the diagonal entries of a satisfy $a_i \approx \lambda_i$. The same holds true if we replace N'by a slightly larger open set N'' (the set of matrices in N whose entries are all smaller than 1, say).

- "⇒" Let us cover A' by open sets $R_{D,D'}$ consisting of diagonal matrices $a \in A'$ with $D < a_1, \ldots, a_n < D'$. We obtain an open cover $\pi(N''R_{D,D'}K)$ of $\operatorname{GL}_N(\mathbb{Z}) \setminus \operatorname{GL}_n(\mathbb{R})$. If X is compact, then it is contained in $\pi(N''R_{D,D'}K)$ for some fixed D, D'. Since $a_i \approx \lambda_i$, this implies $C \leq \lambda_1 \leq \cdots \leq \lambda_n \leq C'$ for some C, C' and all lattices in X.
- "⇐" The subset $S_{D,D'}$ of A' consisting of diagonal matrices $a \in A'$ with $D \leq a_1, \ldots, a_n \leq D'$ is compact for any D, D' > 0. Hence, so is the image $\pi(N'S_{D,D'}K)$. For sufficiently small D and large D', it contains the closed set X, which must therefore also be compact. \Box

Problem 4 (lattice points in cusps). For any $\alpha \in \mathbb{R}$ and any X > 0, consider the compact set

$$S_{\alpha}(X) = \{(x, y) \in \mathbb{R}^2 \mid 1 \leq x \leq X \text{ and } |y - \alpha x| \leq \frac{1}{x}\}$$

and let $N_{\alpha}(X) = \#(S_{\alpha}(X) \cap \mathbb{Z}^2).$

a) Show that its Lebesgue measure is $vol(S_{\alpha}(X)) = 2 \log X$.

Solution. The volume is

$$\int_{1}^{X} \frac{2}{x} \mathrm{d}x = 2\log X.$$

b) (strangeness) Let $\alpha = \frac{p}{q}$ with gcd(p,q) = 1. Show that

$$N_{\alpha}(X) = \frac{X}{q} + \mathcal{O}(q).$$

Solution. For any $1 \leq x \leq X$ and $y \in \mathbb{Z}$, we have $(x, y) \in S_{\alpha}(X)$ if and only if y lies in the interval $[\alpha x - \frac{1}{x}, \alpha x + \frac{1}{x}]$ of length $\frac{2}{x} \leq 2$.

For any fixed $1 \le x \le X$, this interval contains at most 3 integers y. If $x \equiv 0 \mod q$ and x > 1, there is exactly one integer, $y = \frac{px}{q}$ in this interval.

If $x \neq 0 \mod q$ and x > q, the interval contains no integers at all: $\frac{px}{q}$ has distance at least $\frac{1}{q}$ from the closest integer.

Therefore,

$$N_{\alpha}(X) = \sum_{1 \leqslant x \leqslant q} \mathcal{O}(1) + \sum_{\substack{q < x \leqslant X, \\ x \equiv 0 \mod q}} 1 = \frac{X}{q} + \mathcal{O}(q).$$

c) (Dirichlet's approximation theorem) Show that for any $\alpha \in \mathbb{R}$, we have

$$\lim_{X \to \infty} N_{\alpha}(X) = \infty.$$

Solution. If α is rational, the claim follows from b). Assume α is irrational. Consider the parallelogram

$$R_{\alpha}(X) = \{(x, y) \in \mathbb{R}^2 \mid |x| \leq X \text{ and } |y - \alpha x| \leq \frac{1}{X}\}$$

of area 4. By Minkowski's first theorem, it contains a nonzero lattice point $(x, y) \in \mathbb{Z}^2$. If X > 1, we cannot have x = 0. Reflecting across the origin, we can make x > 0, so that $(x, y) \in S_{\alpha}(X)$. Now, note that for $X \to \infty$, we can make $|y - \alpha x|$ arbitrarily close to zero. Since α is irrational, it cannot be equal to zero, so there must be infinitely many points (x, y) as above.

d) (averaging) For any a < b, show that

$$\frac{1}{b-a} \int_{a}^{b} N_{\alpha}(X) d\alpha = 2 \log X + \mathcal{O}\left(1 + \frac{1}{b-a}\right).$$

Solution. We show this using a change of variable $t = y - \alpha x$:

$$\begin{split} \frac{1}{b-a} \int_{a}^{b} N_{\alpha}(X) d\alpha &= \sum_{x=1}^{X} \sum_{y \in \mathbb{Z}} \frac{1}{b-a} \int_{a}^{b} \chi_{[-1/x,1/x]}(y - \alpha x) d\alpha \\ &= \sum_{x=1}^{X} \sum_{y \in \mathbb{Z}} \frac{1}{b-a} \int_{\mathbb{R}} \chi_{[a,b]}(\alpha) \chi_{[-1/x,1/x]}(y - \alpha x) d\alpha \\ &= \sum_{x=1}^{X} \sum_{y \in \mathbb{Z}} \frac{1}{b-a} \int_{\mathbb{R}} \chi_{[a,b]}\left(\frac{y-t}{x}\right) \chi_{[-1/x,1/x]}(t) \frac{dt}{x} \\ &= \sum_{x=1}^{X} \sum_{y \in \mathbb{Z}} \frac{1}{b-a} \int_{-1/x}^{1/x} \chi_{[a,b]}\left(\frac{y-t}{x}\right) \frac{dt}{x} \\ &= \sum_{x=1}^{X} \sum_{y \in \mathbb{Z}} \frac{1}{b-a} \int_{-1/x}^{1/x} \chi_{[t+ax,t+bx]}(y) \frac{dt}{x} \\ &= \sum_{x=1}^{X} \frac{1}{b-a} \int_{-1/x}^{1/x} \#(\mathbb{Z} \cap [t+ax,t+bx]) \frac{dt}{x} \\ &= \sum_{x=1}^{X} \frac{1}{b-a} \int_{-1/x}^{1/x} ((b-a)x + \mathcal{O}(1)) \frac{dt}{x} \\ &= \sum_{x=1}^{|X|} \frac{2}{x} + \mathcal{O}\left(\frac{1}{b-a}\right) \\ &= 2\log X + \mathcal{O}\left(1 + \frac{1}{b-a}\right). \end{split}$$

Problem 5 (smooth functions are swell). Let A be a weighted set on \mathbb{R} whose characteristic function $\chi_A : \mathbb{R} \to \mathbb{R}^{\geq 0}$ is smooth and whose support is bounded. Let $k \geq 0$. Show that

$$#((T \cdot A) \cap \mathbb{Z}) = T \cdot \operatorname{vol}(A) + \mathcal{O}_{A,k}(T^{-k})$$

for $T \to \infty$. (Note that the error term is much better than the error term $\mathcal{O}(1)$ we would get if A were an interval!)

Hint: For example, apply the Poisson summation formula or the Euler-Maclaurin formula (both use integration by parts).

Solution. Using poisson summation The Poisson summation formula implies that

$$#((T \cdot A) \cap \mathbb{Z}) = \sum_{n \in \mathbb{Z}} \chi_{T \cdot A}(n)$$
$$= \sum_{n \in \mathbb{Z}} \widehat{\chi_{T \cdot A}(n)}$$

By definition of Fourier transforms, $\widehat{\chi_{T\cdot A}}(n) = T \cdot \widehat{\chi_A}(Tn)$. Furthermore, $\widehat{\chi_A}(0) = \operatorname{vol}(A)$, so $\widehat{\chi_{T\cdot A}}(0) = T \cdot \operatorname{vol}(A)$. On the other hand, since χ_A is smooth and compactly supported, integration by parts shows that $\widehat{\chi_A}(X) = \mathcal{O}_{A,l}(X^{-l})$ for any $l \ge 0$ and $|X| \to \infty$. Therefore, $\widehat{\chi_{T\cdot A}}(n) = \mathcal{O}_{A,l}(T \cdot (Tn)^{-l})$ for $n \ne 0$. Summing over all n proves the result (choosing $l \ge \max(2, k+1)$).

Using the Euler–Maclaurin formula Since χ_A is compactly supported, the Euler–Maclaurin formula (which can be proven using integration by parts) shows that for any $k \ge 1$,

$$\#((T \cdot A) \cap \mathbb{Z}) = \sum_{n \in \mathbb{Z}} \chi_{T \cdot A}(n)$$

$$= \int_{\mathbb{R}} \chi_{T \cdot A}(x) dx + \mathcal{O}_k \left(\int_{\mathbb{R}} \chi_{T \cdot A}^{(k)}(x) dx \right)$$

$$= \operatorname{vol}(T \cdot A) + \mathcal{O}_k \left(T^{-k} \cdot \int_{\mathbb{R}} \chi_A^{(k)}(x) dx \right)$$

$$= T \cdot \operatorname{vol}(A) + \mathcal{O}_{A,k}(T^{-k}).$$

Problem 6. Fix a number $n \ge 1$ and let $\operatorname{GL}_n(\mathbb{R}) = NAK$ and $\operatorname{SL}_n(\mathbb{R}) = NA_1K_1$ be the Iwasawa decompositions defined in class.

a) Let $B = (\mathbb{R}^{>0})^{n-1}$ (with Haar measure $d^{\times}\mathfrak{b} = \prod_{i} \mathfrak{b}_{i}^{-1}d\mathfrak{b}_{i}$) and consider the isomorphism $B \to A_{1}$ sending $\mathfrak{b} \in B$ to $\mathfrak{a} \in A_{1}$, where $\mathfrak{b}_{i}^{n} = \mathfrak{a}_{i+1}/\mathfrak{a}_{i}$ and conversely $\mathfrak{a}_{i} = (\mathfrak{b}_{1}\cdots\mathfrak{b}_{i-1})^{n}/(\mathfrak{b}_{1}^{n-1}\cdots\mathfrak{b}_{n-1})$. Show that the pull-back of the Haar measure on $\mathrm{SL}_{n}(\mathbb{R})$ defined in class along the diffeomorphism $N \times B \times K_{1} \to \mathrm{SL}_{n}(\mathbb{R})$ arising from the Iwasawa decomposition is as follows (with $(\mathfrak{n}, \mathfrak{b}, \mathfrak{k}) \in N \times B \times K_{1}$):

$$n^{n-2} \cdot \prod_{j=1}^{n-1} \mathfrak{b}_j^{-nj(n-j)} \mathrm{d}^{\times} \mathfrak{n} \mathrm{d}^{\times} \mathfrak{b} \mathrm{d}^{\times} \mathfrak{k}.$$

Solution. Consider the diffeomorphisms

$$\mathbb{R}^{>0} \times N \times B \times K_1 \to \mathbb{R}^{>0} \times \mathrm{SL}_n(\mathbb{R}) \to \mathrm{GL}_n^+(\mathbb{R}) \to N \times A \times K_1,$$

where the second map is given by $(\lambda, h) \mapsto \lambda h$. The pullback of $\prod_{i=1}^{n} \mathfrak{a}_{i}^{n+1-2i} \mathrm{d}^{\times} \mathfrak{n} \mathrm{d}^{\times} \mathfrak{a} \mathrm{d}^{\times} \mathfrak{k}$ along the third map is $\mathrm{d}^{\times} g$. The pullback of $\mathrm{d}^{\times} g$ along the second map is $n\mathrm{d}^{\times}\lambda\mathrm{d}^{\times}h$. It therefore suffices to prove that the pullback along the composition is

$$n^{n-1} \cdot \prod_{j=1}^{n-1} \mathfrak{b}_j^{-nj(n-j)} \mathrm{d}^{\times} \mathfrak{n} \mathrm{d}^{\times} \mathfrak{b} \mathrm{d}^{\times} \mathfrak{k}.$$

The composition $\mathbb{R}^{>0} \times N \times B \times K_1 \to N \times A \times K_1$ arises from the diffeomorphism $\mathbb{R}^{>0} \times B \to A$ given by $(\lambda, \mathfrak{b}) \mapsto \mathfrak{a}$ with $\mathfrak{a}_i = \lambda \cdot (\mathfrak{b}_1 \cdots \mathfrak{b}_{i-1})^n / (\mathfrak{b}_1^{n-1} \cdots \mathfrak{b}_{n-1})$. We therefore only need to show that the pullback of $\prod_{i=1}^n \mathfrak{a}_i^{n+1-2i} d^{\times} \mathfrak{a}$ along this diffeomorphism is $n^{n-1} \cdot \prod_{j=1}^{n-1} \mathfrak{b}_j^{-nj(n-j)} d^{\times} \lambda d^{\times} \mathfrak{b}$. The inverse map is given by $\lambda = (\prod_i \mathfrak{a}_i)^{1/n}$, $\mathfrak{b}_i = (\mathfrak{a}_{i+1}/\mathfrak{a}_i)^{1/n}$. Note that $\prod_j \mathfrak{b}_j^{-nj(n-j)} = \prod_i \mathfrak{a}_i^{n+1-2i}$. We therefore want to show that the pullback of $\prod_i d^{\times} \mathfrak{a}$ is $n^{n-1} \cdot d^{\times} \lambda d^{\times} \mathfrak{b}$. Applying log to $\lambda, \mathfrak{a}_i, \mathfrak{b}_i$, the map $A \to \mathbb{R}^{>0} \times B$ turns into log $\mathfrak{a} \mapsto (\log \lambda, \log \mathfrak{a})$, where $\log \lambda = \frac{1}{n} \sum_i \log \mathfrak{a}_i$ and $\log b_i = \frac{1}{n} (\log \mathfrak{a}_{i+1} - \log \mathfrak{a}_i)$. This is a linear map described by the $n \times n$ -matrix

	(1)	1	1	• • •	1	1
1	-1	1	0	•••		0
	0	-1	1	۰.		:
$\frac{1}{n}$:	·	·	۰.	·	:
	:		·	۰.	۰.	0
	0		• • •	0	-1	1/

with determinant $n^{-(n-1)}$. The result follows since $d^{\times}x = d\log x$. \Box

b) Let $\widetilde{\mathcal{F}} = N'A'K \subset \operatorname{GL}_n(\mathbb{R})$ be Siegel's almost fundamental domain for $\operatorname{GL}_n(\mathbb{Z}) \setminus \operatorname{GL}_n(\mathbb{R})$. Compute the volume of $\widetilde{\mathcal{F}} \cap \operatorname{SL}_n(\mathbb{R})$ with respect to the Haar measure on $\operatorname{SL}_n(\mathbb{R})$ defined in class.

Solution. Hopefully, by a), the definition of Siegel's almost fundamental domain and the fact that $\operatorname{vol}(\operatorname{SO}_n(\mathbb{R})) = \frac{1}{2} \cdot V_1 \cdots V_n$, we have

$$\operatorname{vol}(\widetilde{\mathcal{F}} \cap \operatorname{SL}_n(\mathbb{R})) = \frac{V_1 \cdots V_n}{2n(n-1)!^2} \cdot \left(\frac{2}{\sqrt{3}}\right)^{n(n-1)(n+1)/6}$$

where V_k is the volume the (k-1)-dimensional unit sphere S^{k-1} . Note that for $n \to \infty$, the volume rapidly goes to infinity. On the other hand, the volume $\zeta(2) \cdots \zeta(n)$ of a fundamental domain for $\mathrm{SL}_n(\mathbb{Z}) \setminus \mathrm{SL}_n(\mathbb{R})$ converges for $n \to \infty$. Hence, Siegel's fundamental domain is in this sense a very crude approximation to an actual fundamental domain!

Problem 7. Don't worry, be happy.