
Math 286X: Arithmetic Statistics

Spring 2020

Problem set #5

Problem 1. Consider a measure-preserving action of a countable group
G on a set X. Let rF be a measurable almost fundamental domain for
this action, with volume 0 ă volp rFq ă 8. Show that the corresponding
fundamental domain F also has volume 0 ă volpFq ă 8.

Solution. The characteristic function χF satisfies 0 ă χF pxq ď 1 for any
x P rF . This immediately implies the claim.

Step by step: Let An be the set of elements x of rF such that there are
exactly n distinct g P G with gx P rF . We have seen in class that An is mea-

surable. By definition, rF “
Ů8
n“1An and F “

Ů8
n“1A

\ 1
n

n . Hence, volp rFq “
ř8
n“1 volpAnq and volpFq “

ř8
n“1

1
n volpAnq. In particular, volpFq ď volp rFq.

On the other hand, volp rFq ą 0 implies that volpAnq ą 0 for some n, so
volpFq ą 0.

Problem 2. Order the full integer lattices Λ Ď Zn by their covolume.

a) Let e1, . . . , en be the standard basis of Zn. Show that

Ppe1 P Λ | Λ Ď Zn full latticeq “ 0.

Solution. Consider the embedding ϕ : Zn´1 ãÑ Zn sending px2, . . . , xnq
to p0, x2, . . . , xnq. We obtain a covolume-preserving bijection

tfull lattice Λ1 Ď Zn´1u ÐÑ tfull lattice Λ Ď Zn containing e1u

sending Λ1 to e1Z`ϕpΛ1q. We have seen in class that there are — Tn´1

full lattices Λ1 Ď Zn´1 and that there are — Tn full lattices Λ Ď Zn
with covolume at most T .

b) Let π : Zn Ñ Zn´1 be the projection onto the first n´ 1 coordinates.
Then, πpΛq Ď Zn´1 is always a full lattice. Show that

PpπpΛq “ Zn´1 | Λ Ď Zn full latticeq “
1

ζp2q ¨ ¨ ¨ ζpnq
.
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Solution. A lattice Λ satisfies πpΛq “ Zn´1 if and only if its Hermite
normal form looks like the identity matrix in the first n´ 1 columns.
The number of such matrices in Hermite normal form of determinant
at most T is

ř

aďT a
n´1 „ 1

nT
n. The claim follows, since we have

shown that the total number of lattices of covolume at most T is
ř

a1¨¨¨anďT

śn
i“1 a

i´1
i „ 1

nζp2q ¨ ¨ ¨ ζpnqT
n.

Problem 3 (Mahler’s criterion). Equip GLnpZqzGLnpRq with the quotient
topology. Let X be a closed subset of GLnpZqzGLnpRq. Show that X is
compact if and only if there exist 0 ă C ď C 1 ă 8 such that the successive
minima λ1 ď ¨ ¨ ¨ ď λn of any lattice Λ corresponding to an element of X
satisfy C ď λ1 ď ¨ ¨ ¨ ď λn ď C 1.
Hint: Use the Iwasawa decomposition and Siegel’s almost fundamental do-
main.

Solution. Use the Iwasawa decomposition GLnpRq “ NAK and the fact
that any GLnpZq-orbit contains an element in Siegel’s almost fundamental
domain N 1A1K. Let π : GLnpRq Ñ GLnpZqzGLnpRq be the (continuous)
projection map. Recall that if g “ nak with n P N 1, a P A1, k P K
corresponds to the lattice Λ with successive minima λ1 ď ¨ ¨ ¨ ď λn, then the
diagonal entries of a satisfy ai — λi. The same holds true if we replace N 1

by a slightly larger open set N2 (the set of matrices in N whose entries are
all smaller than 1, say).

“ñ” Let us cover A1 by open sets RD,D1 consisting of diagonal matri-
ces a P A1 with D ă a1, . . . , an ă D1. We obtain an open cover
πpN2RD,D1Kq of GLN pZqzGLnpRq. If X is compact, then it is con-
tained in πpN2RD,D1Kq for some fixed D,D1. Since ai — λi, this
implies C ď λ1 ď ¨ ¨ ¨ ď λn ď C 1 for some C,C 1 and all lattices in X.

“ð” The subset SD,D1 of A1 consisting of diagonal matrices a P A1 with
D ď a1, . . . , an ď D1 is compact for any D,D1 ą 0. Hence, so is the
image πpN 1SD,D1Kq. For sufficiently small D and large D1, it contains
the closed set X, which must therefore also be compact.

Problem 4 (lattice points in cusps). For any α P R and any X ą 0, consider
the compact set

SαpXq “ tpx, yq P R2 | 1 ď x ď X and |y ´ αx| ď
1

x
u

and let NαpXq “ #pSαpXq X Z2q.
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a) Show that its Lebesgue measure is volpSαpXqq “ 2 logX.

Solution. The volume is
ż X

1

2

x
dx “ 2 logX.

b) (strangeness) Let α “ p
q with gcdpp, qq “ 1. Show that

NαpXq “
X

q
`Opqq.

Solution. For any 1 ď x ď X and y P Z, we have px, yq P SαpXq if and
only if y lies in the interval rαx´ 1

x , αx`
1
x s of length 2

x ď 2.

For any fixed 1 ď x ď X, this interval contains at most 3 integers y.

If x ” 0 mod q and x ą 1, there is exactly one integer, y “ px
q in this

interval.

If x ı 0 mod q and x ą q, the interval contains no integers at all: px
q

has distance at least 1
q from the closest integer.

Therefore,

NαpXq “
ÿ

1ďxďq

Op1q `
ÿ

qăxďX,
x”0 mod q

1 “
X

q
`Opqq.

c) (Dirichlet’s approximation theorem) Show that for any α P R, we have

lim
XÑ8

NαpXq “ 8.

Solution. If α is rational, the claim follows from b). Assume α is
irrational. Consider the parallelogram

RαpXq “ tpx, yq P R2 | |x| ď X and |y ´ αx| ď
1

X
u

of area 4. By Minkowski’s first theorem, it contains a nonzero lattice
point px, yq P Z2. If X ą 1, we cannot have x “ 0. Reflecting across
the origin, we can make x ą 0, so that px, yq P SαpXq. Now, note that
for X Ñ8, we can make |y ´ αx| arbitrarily close to zero. Since α is
irrational, it cannot be equal to zero, so there must be infinitely many
points px, yq as above.
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d) (averaging) For any a ă b, show that

1

b´ a

ż b

a
NαpXqdα “ 2 logX `O

ˆ

1`
1

b´ a

˙

.

Solution. We show this using a change of variable t “ y ´ αx:

1

b´ a

ż b

a
NαpXqdα “

X
ÿ

x“1

ÿ

yPZ

1

b´ a

ż b

a
χr´1{x,1{xspy ´ αxqdα

“

X
ÿ

x“1

ÿ

yPZ

1

b´ a

ż

R
χra,bspαqχr´1{x,1{xspy ´ αxqdα

“

X
ÿ

x“1

ÿ

yPZ

1

b´ a

ż

R
χra,bs

ˆ

y ´ t

x

˙

χr´1{x,1{xsptq
dt

x

“

X
ÿ

x“1

ÿ

yPZ

1

b´ a

ż 1{x

´1{x
χra,bs

ˆ

y ´ t

x

˙

dt

x

“

X
ÿ

x“1

ÿ

yPZ

1

b´ a

ż 1{x

´1{x
χrt`ax,t`bxspyq

dt

x

“

X
ÿ

x“1

1

b´ a

ż 1{x

´1{x
#pZX rt` ax, t` bxsq

dt

x

“

X
ÿ

x“1

1

b´ a

ż 1{x

´1{x
ppb´ aqx`Op1qqdt

x

“

tXu
ÿ

x“1

2

x
`O

ˆ

1

b´ a

˙

“ 2 logX `O
ˆ

1`
1

b´ a

˙

.

Problem 5 (smooth functions are swell). Let A be a weighted set on R
whose characteristic function χA : R Ñ Rě0 is smooth and whose support
is bounded. Let k ě 0. Show that

#ppT ¨Aq X Zq “ T ¨ volpAq `OA,kpT
´kq

for T Ñ 8. (Note that the error term is much better than the error term
Op1q we would get if A were an interval!)
Hint: For example, apply the Poisson summation formula or the Euler–
Maclaurin formula (both use integration by parts).
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Solution. Using poisson summation The Poisson summation formula im-
plies that

#ppT ¨Aq X Zq “
ÿ

nPZ
χT ¨Apnq

“
ÿ

nPZ
zχT ¨Apnq.

By definition of Fourier transforms, zχT ¨Apnq “ T ¨ xχApTnq. Further-
more, xχAp0q “ volpAq, so zχT ¨Ap0q “ T ¨ volpAq. On the other hand,
since χA is smooth and compactly supported, integration by parts
shows that xχApXq “ OA,lpX

´lq for any l ě 0 and |X| Ñ 8. There-
fore, zχT ¨Apnq “ OA,lpT ¨ pTnq

´lq for n ‰ 0. Summing over all n proves
the result (choosing l ě maxp2, k ` 1q).

Using the Euler–Maclaurin formula Since χA is compactly supported,
the Euler–Maclaurin formula (which can be proven using integration
by parts) shows that for any k ě 1,

#ppT ¨Aq X Zq “
ÿ

nPZ
χT ¨Apnq

“

ż

R
χT ¨Apxqdx`Ok

ˆ
ż

R
χ
pkq
T ¨Apxqdx

˙

“ volpT ¨Aq `Ok

ˆ

T´k ¨

ż

R
χ
pkq
A pxqdx

˙

“ T ¨ volpAq `OA,kpT
´kq.

Problem 6. Fix a number n ě 1 and let GLnpRq “ NAK and SLnpRq “
NA1K1 be the Iwasawa decompositions defined in class.

a) Let B “ pRą0qn´1 (with Haar measure dˆb “
ś

i b
´1
i dbi) and consider

the isomorphism B Ñ A1 sending b P B to a P A1, where bni “
ai`1{ai and conversely ai “ pb1 ¨ ¨ ¨ bi´1q

n{pbn´11 ¨ ¨ ¨ bn´1q. Show that
the pull-back of the Haar measure on SLnpRq defined in class along
the diffeomorphism N ˆ B ˆK1 Ñ SLnpRq arising from the Iwasawa
decomposition is as follows (with pn, b, kq P N ˆB ˆK1):

nn´2 ¨
n´1
ź

j“1

b
´njpn´jq
j dˆndˆbdˆk.
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Solution. Consider the diffeomorphisms

Rą0 ˆN ˆB ˆK1 Ñ Rą0 ˆ SLnpRq Ñ GL`n pRq Ñ N ˆAˆK1,

where the second map is given by pλ, hq ÞÑ λh. The pullback of
śn
i“1 a

n`1´2i
i dˆndˆadˆk along the third map is dˆg. The pullback

of dˆg along the second map is ndˆλdˆh. It therefore suffices to
prove that the pullback along the composition is

nn´1 ¨
n´1
ź

j“1

b
´njpn´jq
j dˆndˆbdˆk.

The composition Rą0 ˆ N ˆ B ˆ K1 Ñ N ˆ A ˆ K1 arises from
the diffeomorphism Rą0 ˆ B Ñ A given by pλ, bq ÞÑ a with ai “
λ ¨ pb1 ¨ ¨ ¨ bi´1q

n{pbn´11 ¨ ¨ ¨ bn´1q. We therefore only need to show that
the pullback of

śn
i“1 a

n`1´2i
i dˆa along this diffeomorphism is nn´1 ¨

śn´1
j“1 b

´njpn´jq
j dˆλdˆb. The inverse map is given by λ “ p

ś

i aiq
1{n,

bi “ pai`1{aiq
1{n. Note that

ś

j b
´njpn´jq
j “

ś

i a
n`1´2i
i . We therefore

want to show that the pullback of
ś

i dˆa is nn´1 ¨dˆλdˆb. Applying
log to λ, ai, bi, the map AÑ Rą0ˆB turns into log a ÞÑ plog λ, log aq,
where log λ “ 1

n

ř

i log ai and log bi “
1
nplog ai`1 ´ log aiq. This is a

linear map described by the nˆ n-matrix

1

n
¨

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 1 1 ¨ ¨ ¨ 1 1
´1 1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0

0 ´1 1
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 ¨ ¨ ¨ ¨ ¨ ¨ 0 ´1 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

with determinant n´pn´1q. The result follows since dˆx “ d log x.

b) Let rF “ N 1A1K Ă GLnpRq be Siegel’s almost fundamental domain for
GLnpZqzGLnpRq. Compute the volume of rF X SLnpRq with respect
to the Haar measure on SLnpRq defined in class.

Solution. Hopefully, by a), the definition of Siegel’s almost fundamen-
tal domain and the fact that volpSOnpRqq “ 1

2 ¨ V1 ¨ ¨ ¨Vn, we have

volp rF X SLnpRqq “
V1 ¨ ¨ ¨Vn

2npn´ 1q!2
¨

ˆ

2
?

3

˙npn´1qpn`1q{6

,
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where Vk is the volume the pk´1q-dimensional unit sphere Sk´1. Note
that for nÑ8, the volume rapidly goes to infinity. On the other hand,
the volume ζp2q ¨ ¨ ¨ ζpnq of a fundamental domain for SLnpZqzSLnpRq
converges for n Ñ 8. Hence, Siegel’s fundamental domain is in this
sense a very crude approximation to an actual fundamental domain!

Problem 7. Don’t worry, be happy.
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