Math 286X: Arithmetic Statistics

Spring 2020

Problem set \#4

Problem 1 (Compare with problem 2 on problem set 3). Let $A \subset \mathbb{R}$ be a compact subset and let $I \subset \mathbb{R}$ be a bounded interval. Let $B \subset \mathbb{R}$ be the weighted set whose characteristic function is the convolution

$$
\chi_{B}(x)=\frac{1}{\operatorname{vol}(I)} \cdot \int_{\mathbb{R}} \chi_{A}(x-s) \chi_{I}(s) \mathrm{d} s=\frac{1}{\operatorname{vol}(I)} \cdot \int_{\mathbb{R}} \chi_{A}(s) \chi_{I}(x-s) \mathrm{d} s
$$

Show that

$$
\#((T \cdot B) \cap \mathbb{Z}) \sim_{A, I} \operatorname{vol}(A) \cdot T
$$

for $T \rightarrow \infty$.
Solution. We have

$$
\begin{aligned}
& \#((T \cdot B) \cap \mathbb{Z}) \\
& =\sum_{x \in \mathbb{Z}} \chi_{T \cdot B}(x) \\
& =\sum_{x \in \mathbb{Z}} \chi_{B}\left(\frac{x}{T}\right) \\
& =\sum_{x \in \mathbb{Z}} \frac{1}{\operatorname{vol}(I)} \cdot \int_{\mathbb{R}} \chi_{A}(s) \chi_{I}\left(\frac{x}{T}-s\right) \mathrm{d} s \\
& =\frac{1}{\operatorname{vol}(I)} \cdot \int_{\mathbb{R}} \chi_{A}(s) \sum_{x \in \mathbb{Z}} \chi_{I}\left(\frac{x}{T}-s\right) \mathrm{d} s \\
& =\frac{1}{\operatorname{vol}(I)} \cdot \int_{\mathbb{R}} \chi_{A}(s) \sum_{x \in \mathbb{Z}} \chi_{T \cdot(I+s)}(x) \mathrm{d} s \\
& =\frac{1}{\operatorname{vol}(I)} \cdot \int_{\mathbb{R}} \chi_{A}(s) \#((T \cdot(I+s)) \cap \mathbb{Z}) \mathrm{d} s \\
& =\frac{1}{\operatorname{vol}(I)} \cdot \int_{\mathbb{R}} \chi_{A}(s)(\operatorname{vol}(T \cdot(I+s))+\mathcal{O}(1)) \mathrm{d} s \\
& =\frac{1}{\operatorname{vol}(I)} \cdot \int_{\mathbb{R}} \chi_{A}(s)(\operatorname{vol}(I) \cdot T+\mathcal{O}(1)) \mathrm{d} s \\
& =\operatorname{vol}(A) \cdot T+\mathcal{O}\left(\frac{\operatorname{vol}(A)}{\operatorname{vol}(I)}\right)
\end{aligned}
$$

Problem 2. Explicitly describe fundamental domains for the following actions:
a) The action of \mathbb{Z}_{p} on \mathbb{Q}_{p} by translation.

Solution. For example, the set of quotients r / p^{e}, where $0 \leqslant r<p^{e}$ and $e \geqslant 0$. (These are the p-adic rational numbers that have only zeroes before the decimal point.)
b) The action of $\mathbb{Z}_{(p)}=\left\{p^{a} b \mid a, b \in \mathbb{Z}\right\} \subset \mathbb{Q}$ on $\mathbb{R} \times \mathbb{Q}_{p}$ given by $g .(x, y)=$ $(g+x, g+y)$.

Solution. For example, $[0,1) \times \mathbb{Z}_{p}$.
Problem 3. Let $\mathcal{V}(\mathbb{Z})$ be the set of quadratic forms $a X^{2}+b X Y+c Y^{2}$ with $a, b, c \in \mathbb{Z}$, ordered by $\max (|a|,|b|,|c|)$. Let p be a prime number. Call an integer $D \in \mathbb{Z}$ fundamental at p if $p^{2} \nmid D$ when $p \neq 2$ and if $D \equiv 1 \bmod 4$ or $D \equiv 8,12 \bmod 16$ when $p=2$. (This means that $D \neq 1$ is a fundamental discriminant if and only if it is fundamental at every prime p.) Show that

$$
\mathbb{P}(\operatorname{disc}(f) \text { is fundamental at } p \mid f \in \mathcal{V}(\mathbb{Z}))=1-p^{-2}-p^{-3}+p^{-4}
$$

(Feel free to use a computer.)

Solution. Let us first handle the case $p \neq 2$. We need to find the probability that $b^{2}-4 a c \not \equiv 0 \bmod p^{2}$ for $a, b, c \in \mathbb{Z} / p^{2} \mathbb{Z}$.

$$
\begin{aligned}
& \mathbb{P}\left(b^{2}-4 a c \not \equiv 0 \quad \bmod p^{2} \mid a, b, c \in \mathbb{Z} / p^{2} \mathbb{Z}\right) \\
& =1-\mathbb{P}\left(b^{2}-4 a c \equiv 0 \quad \bmod p^{2} \mid a, b, c \in \mathbb{Z} / p^{2} \mathbb{Z}\right)
\end{aligned}
$$

With probability $1-p^{-1}$, a is not divisible by p. In this case, for any given b, there is exactly one residue class $c \bmod p^{2}$ so that $b^{2}-4 a c \equiv 0$ $\bmod p^{2}$. Hence, if a is not divisible by p, we have $b^{2}-4 a c \equiv 0 \bmod p^{2}$ with probability p^{-2}.
With probability $p^{-1}-p^{-2}, a$ is divisible by p exactly once. In this case, we have $b^{2}-4 a c \equiv 0 \bmod p^{2}$ if and only if b and c are both divisible by p, which happens with probability p^{-2}.

With probability p^{-2}, a is divisible by p^{2}. In this case, we have $b^{2}-4 a c \equiv 0$ $\bmod p^{2}$ if and only if b is divisible by p, which happens with probability p^{-1}.
Summing up these probabilities, we obtain

$$
\begin{aligned}
& \mathbb{P}\left(b^{2}-4 a c \not \equiv 0 \quad \bmod p^{2} \mid a, b, c \in \mathbb{Z} / p^{2} \mathbb{Z}\right) \\
& =1-\left(1-p^{-1}\right) \cdot p^{-2}-\left(p^{-1}-p^{-2}\right) \cdot p^{-2}-p^{-2} \cdot p^{-1} \\
& =1-p^{-2}-p^{-3}+p^{-4} .
\end{aligned}
$$

For $p=2$, you can either go through an argument similar to the above, or just use a computer to check all $a, b, c \in \mathbb{Z} / 16 \mathbb{Z}$.

Problem 4. Let K be a quadratic number field of discriminant D. In class, we've constructed a bijection

$$
\mathrm{Cl}_{K}=K^{\times} \backslash\{I \text { fractional ideal of } K\} \longleftrightarrow \mathrm{GL}_{2}(\mathbb{Z}) \backslash \mathcal{V}_{\text {disc }=D}(\mathbb{Z}) .
$$

Let $\mathcal{W}(\mathbb{Z})=\mathcal{V}(\mathbb{Z}) \times \mathbb{Z}^{2}$ be the set of pairs $e=(f, v)$, where f is a binary quadratic form with integer coefficients, and $v \in \mathbb{Z}^{2}$. Let $\operatorname{disc}(e)=\operatorname{disc}(f)$ and $\operatorname{Nm}(e)=f(v)$. Furthermore, let $\mathrm{GL}_{2}(\mathbb{Z})$ act on $\mathcal{W}(\mathbb{Z})$ by $M \cdot(f, v)=$ $\left(M . f, \operatorname{det}(M)\left(M^{T}\right)^{-1} v\right)$ (where the action on $\mathcal{V}(\mathbb{Z})$ was defined in class by $\left.(M . f)(w)=f\left(M^{T} w\right) / \operatorname{det}(M)\right)$. For any $N \geqslant 1$, let $\mathcal{W}_{\text {disc }=D,|\operatorname{Nm}|=N} \subset \mathcal{W}$ be the set of $e \in \mathcal{W}$ with $\operatorname{disc}(e)=D$ and $|\operatorname{Nm}(e)|=N$.
a) Construct a bijection

$$
\left\{I \subseteq \mathcal{O}_{K} \text { ideal of } \mathcal{O}_{K} \mid \operatorname{Nm}(I)=N\right\} \longleftrightarrow \mathrm{GL}_{2}(\mathbb{Z}) \backslash \mathcal{W}_{\text {disc }=D,|\mathrm{Nm}|=N}(\mathbb{Z}) .
$$

Solution. Remember that $(1, \tau)$ is a basis of \mathcal{O}_{K}, where $\tau=\frac{D+\sqrt{D}}{2}$.
The group $\mathrm{GL}_{2}(\mathbb{Q})$ acts freely and transitively on the set of \mathbb{Q}-bases $\left(\omega_{1}, \omega_{2}\right)$ of K. Let us define an action of $\mathrm{GL}_{2}(\mathbb{Q})$ on $\mathcal{W}_{\text {disc }=D}(\mathbb{Q})$ exactly in the same way as the action of $\mathrm{GL}_{2}(\mathbb{Z})$.
To define a $G L_{2}(\mathbb{Q})$-equivariant map

$$
\left\{\left(\omega_{1}, \omega_{2}\right) \mathbb{Q} \text {-basis of } K\right\} \longleftrightarrow \mathcal{W}_{\text {disc }=D}(\mathbb{Q}),
$$

it then suffices to specify the image $e_{0}=\left(f_{0}, v_{0}\right)$ of the standard basis $(1, \tau)$ of \mathcal{O}_{K} : We use the quadratic form $f_{0}(X, Y)=X^{2}+D X Y+$ $\frac{D^{2}-D}{4} Y^{2}$ computed in class. To ensure that $\left|f_{0}\left(v_{0}\right)\right|=\left|\operatorname{Nm}\left(e_{0}\right)\right|=$ $\operatorname{Nm}\left(\mathcal{O}_{K}\right)=1$, let's take $v_{0}=\binom{1}{0}$.

If $e=S e_{0}$ for some matrix $S \in \mathrm{GL}_{2}(\mathbb{Q})$ with $e=(f, v)$, then

$$
\begin{aligned}
\operatorname{Nm}(e) & =f(v)=f_{0}\left(S^{T} \operatorname{det}(S)\left(S^{T}\right)^{-1} v_{0}\right) / \operatorname{det}(S) \\
& =f_{0}\left(\operatorname{det}(S) v_{0}\right) / \operatorname{det}(S)=\operatorname{det}(S) \cdot f_{0}\left(v_{0}\right)=\operatorname{det}(S) .
\end{aligned}
$$

Since the matrix S sends the basis $(1, \tau)$ of \mathcal{O}_{K} to a basis $\left(\omega_{1}, \omega_{2}\right)$ corresponding to e, the norm of the \mathbb{Z}-module I generated by ω_{1}, ω_{2} is therefore indeed $|\operatorname{det}(S)|=|\operatorname{Nm}(e)|$.
A short computation shows that the preimage of $e=(f, v) \in \mathcal{W}_{\text {disc }=D}(\mathbb{Z})$ with $f=a X^{2}+b X Y+c Y^{2}$ and $v=\binom{r}{s}$ is the basis $\left(\omega_{1}, \omega_{2}\right)$ with

$$
\omega_{1}=\left(a r+\frac{b+D}{2} \cdot s\right)-s \tau, \quad \omega_{2}=\left(c s+\frac{b-D}{2} \cdot r\right)+r \tau .
$$

We've shown in class that the \mathbb{Z}-module I generated by ω_{1} and ω_{2} is a fractional ideal if and only if $a, b, c \in \mathbb{Z}$. It is clear that under this assumption, $I \subseteq \mathcal{O}_{K}$ (meaning $\omega_{1}, \omega_{2} \in \mathcal{O}_{K}$) if and only if $r, s \in \mathbb{Z}$ (we have $b-D \equiv b-b^{2} \equiv 0 \bmod 2$ whenever $\left.a, b, c \in \mathbb{Z}\right)$.
We hence obtain a $\left(\mathrm{GL}_{2}(\mathbb{Z})\right.$-equivariant) bijection

$$
\left\{\left(\omega_{1}, \omega_{2}\right) \text { basis of } I \subseteq \mathcal{O}_{K} \mid \operatorname{Nm}(I)=N\right\} \longleftrightarrow \mathcal{W}_{\text {disc }=D,|\operatorname{Nm}|=N}(\mathbb{Z}) .
$$

Since $\mathrm{GL}_{2}(\mathbb{Z})$ acts transitively on the bases of a fixed ideal I, we obtain the desired bijection.
b) What is the $\mathrm{GL}_{2}(\mathbb{Z})$-stabilizer of an element of $\mathcal{W}_{\text {disc }=D,|\mathrm{Nm}|=N}(\mathbb{Z})$?

Solution. The stabilizer is trivial, because we have shown above that each element of $\mathcal{W}_{\text {disc }=D,|\mathrm{Nm}|=N}(\mathbb{Q})$ corresponds to only one basis $\left(\omega_{1}, \omega_{2}\right)$.

