Math 286X: Arithmetic Statistics

Spring 2020

Problem set \#3

Problem 1. Let $A \subset \mathbb{R}^{n}$ be a bounded set whose boundary is Lipschitz. Let $k \geqslant 1$ and $y \in(\mathbb{Z} / k \mathbb{Z})^{n}$. Show that

$$
\lim _{T \rightarrow \infty} \mathbb{P}\left(x \equiv y \quad \bmod k \mid x \in(T \cdot A) \cap \mathbb{Z}^{n}\right)=\frac{1}{k^{n}}
$$

Solution. Apply Widmer's theorem to the sets $T \cdot A$ and $\frac{1}{k} \cdot(T \cdot A-y)$. Use that $\operatorname{vol}(T \cdot A) / \operatorname{vol}\left(\frac{1}{k} \cdot(T \cdot A-y)\right)=k^{-n}$. If ∂A is (M, L)-Lipschitz, then $\partial(T \cdot A)$ is $(M, T L)$-Lipschitz and $\partial\left(\frac{1}{k} \cdot(T \cdot A-y)\right)$ is $\left(M, \frac{T}{k} \cdot L\right)$-Lipschitz.

Problem 2. Find a compact subset $A \subset \mathbb{R}$ with positive volume, but so that

$$
\liminf _{T \rightarrow \infty} \#((T \cdot A) \cap \mathbb{Z})=0
$$

Solution. Choose an enumeration a_{1}, a_{2}, \ldots of the rational numbers in the interval $[0,1]$. Let $A=[0,1] \backslash \bigcup_{n \geqslant 1} B_{2^{-n-2}}\left(a_{n}\right)$, where $B_{r}(x)$ is the open ball of radius r centered at x. By the monotone convergence theorem, A is measurable and has volume at least $1-\sum_{n=1}^{\infty} 2^{-n-1}=\frac{1}{2}>0$. On the other hand, for any $T \in \mathbb{Z}$, we have $(T \cdot A) \cap \mathbb{Z}=\varnothing$ because we have removed all rational numbers from A.

Problem 3. Identify the space V_{n} of monic polynomials of degree n with \mathbb{R}^{n} by sending $f(X)=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0} \in \mathbb{R}[X]$ to $\left(a_{n-1}, \ldots, a_{0}\right)$. Consider the map $\varphi_{n}: \mathbb{R}^{n} \rightarrow V_{n} \cong \mathbb{R}^{n}$ sending $x=\left(x_{1}, \ldots, x_{n}\right)$ to $f(X)=$ $\prod_{i}\left(X-x_{i}\right)$.
a) Show that the Jacobian determinant at $x \in \mathbb{R}^{n}$ is $(-1)^{n} \prod_{i<j}\left(x_{i}-x_{j}\right)$.

Solution. We have $\partial_{i} \varphi_{n}(x)=-\prod_{j \neq i}\left(X-x_{j}\right)$. Now, subtract the first partial derivative ∂_{1} from all other partial derivatives ∂_{i} with $i>1$. We get $\partial_{i} \varphi_{n}(x)-\partial_{1} \varphi_{n}(x)=\left(x_{1}-x_{i}\right) \prod_{j \neq i, n}\left(X-x_{j}\right)$, which is a polynomial of degree $n-2$. The X^{n-1}-coefficient in $\partial_{1} \varphi_{n}(x)$ is -1 . Hence, the Jacobian determinant of φ_{n} at x is $(-1)^{n} \prod_{1<i}\left(x_{1}-x_{i}\right)$ times the Jacobian determinant of φ_{n-1} at $\left(x_{2}, \ldots, x_{n}\right)$. The claim follows by induction.
b) Show that the volume of the image $\varphi_{3}\left([-1,1]^{3}\right) \subset V_{3} \cong \mathbb{R}^{3}$ is $16 / 45$. (Use a computer if you like.)

Solution. Each $\left(a_{2}, a_{1}, a_{0}\right)$ in the image has exactly one preimage $\left(x_{1}, x_{2}, x_{3}\right) \in$ $[-1,1]^{3}$ with $x_{1} \geqslant x_{2} \geqslant x_{3}$. The Jacobian determinant at such a point has absolute value $\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)$. Therefore,

$$
\begin{aligned}
& \operatorname{vol}\left(\varphi_{3}\left([-1,1]^{3}\right)\right) \\
& =\int_{-1}^{1} \int_{-1}^{x_{1}} \int_{-1}^{x_{2}}\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right) \mathrm{d} x_{3} \mathrm{~d} x_{2} \mathrm{~d} x_{1} \\
& =\frac{16}{45}
\end{aligned}
$$

Problem 4. Fix some $n \geqslant 2$. Order the algebraic integers $\alpha \in \overline{\mathbb{Z}}$ of degree n and trace 0 by length $|\alpha|$. Let disc (α) be the discriminant of the ring $\mathbb{Z}[\alpha]$. We always have $|\operatorname{disc}(\alpha)|<_{n}|\alpha|^{n(n-1)}$. Show that

$$
\lim _{\varepsilon \rightarrow 0} \mathbb{P}\left(|\operatorname{disc}(\alpha)| \geqslant \varepsilon|\alpha|^{n(n-1)} \mid \alpha \text { as above }\right)=1
$$

Solution. We separately consider each possible signature (r_{1}, r_{2}). Let $A=$ $\left\{x \in\left(\mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}}\right)^{0}| | x \mid \leqslant 1\right\}$, let $I=\left\{x \in \mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}} \mid x_{i}=x_{j}\right.$ for some $\left.i \neq j\right\}$ and let $B_{\varepsilon}=\left\{\left.x \in\left(\mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}}\right)^{0}\left|\operatorname{det}(M(x))^{2} \geqslant \varepsilon\right| x\right|^{n(n-1)}\right\}$, where $M(x)$ is the $n \times n$-matrix whose columns are the vectors $1, x, \ldots, x^{n-1} \in \mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}} \cong \mathbb{R}^{n}$. Note that $\operatorname{det}(M(\lambda x))^{2}=\lambda^{n(n-1)} \operatorname{det}(M(x))^{2}$, so $\lambda B_{\varepsilon}=B_{\varepsilon}$ for any $\lambda \in \mathbb{R}^{\times}$. Furthermore, $\operatorname{det}(M(x))=0$ if and only if $x \in I$. Consider the map

$$
\varphi:\left(\mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}}\right)^{0} \rightarrow\left\{\begin{array}{c}
\text { monic } f(X) \in \mathbb{R}[X] \text { of degree } n \\
\text { with } X^{n-1} \text {-coefficient } 0
\end{array}\right\} \cong \mathbb{R}^{n-1}
$$

sending x to $\prod_{i}\left(X-x_{i}\right)$. Then,

$$
\begin{aligned}
& \#\left\{\alpha \in \overline{\mathbb{Z}} \text { of signature }\left(r_{1}, r_{2}\right) \text { and trace } 0 \text { and length }|\alpha| \leqslant S\right\} \\
& =n \cdot \#\{\text { irreducible } f(X) \in \varphi(S \cdot A) \cap \mathbb{Z}[X]\} \\
& =n \cdot \#\{\varphi(S \cdot A) \cap \mathbb{Z}[X]\}+o\left(S^{(n-1)(n+2) / 2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \#\left\{\begin{array}{c}
\alpha \in \overline{\mathbb{Z}} \text { of signature }\left(r_{1}, r_{2}\right) \text { and trace } 0 \\
\text { and length }|\alpha| \leqslant S \text { and }|\operatorname{disc}(\alpha)| \leqslant \varepsilon|\alpha|^{n(n-1)}
\end{array}\right\} \\
& =n \cdot \#\left\{\text { irreducible } f(X) \in \varphi\left(S \cdot\left(A \cap B_{\varepsilon}\right)\right) \cap \mathbb{Z}[X]\right\} \\
& =n \cdot \#\left\{\varphi\left(S \cdot\left(A \cap B_{\varepsilon}\right)\right) \cap \mathbb{Z}[X]\right\}+o\left(S^{(n-1)(n+2) / 2}\right) .
\end{aligned}
$$

The boundaries of A and $A \cap B_{\varepsilon}$ are Lipschitz (the boundary of B_{ε} is contained in the set of x such that $\operatorname{det}(M(x))^{2}=\varepsilon|x|^{n(n-1)}$, which is contained in the union of $r_{1}+r_{2}$ zero sets of nonzero polynomials). The set $A \cap I$ is also Lipschitz. As we've seen in class, this implies that the boundaries of $\varphi(A)$ and $\varphi\left(A \cap B_{\varepsilon}\right)$ are Lipschitz. By a corollary to Widmer's theorem, it follows that

$$
\mathbb{P}\left(|\operatorname{disc}(\alpha)| \geqslant \varepsilon|\alpha|^{n(n-1)} \mid \alpha \text { as above }\right)=\frac{\operatorname{vol}\left(A \cap B_{\varepsilon}\right)}{\operatorname{vol}(A)}
$$

We have $B_{\varepsilon} \subseteq B_{\varepsilon^{\prime}}$ for $\varepsilon>\varepsilon^{\prime}$ and $\bigcup_{\varepsilon>0}\left(A \cap B_{\varepsilon}\right)=A \backslash I$. Hence, $\lim _{\varepsilon \rightarrow 0} \operatorname{vol}(A \cap$ $\left.B_{\varepsilon}\right)=\operatorname{vol}(A \backslash I)=\operatorname{vol}(I)$.

Problem 5. Fix some $n \geqslant 2$. Order the algebraic integers $\alpha \in \overline{\mathbb{Z}}$ of degree n and trace 0 by length $|\alpha|$. Let $\lambda_{1}(\alpha) \leqslant \cdots \leqslant \lambda_{n}(\alpha)$ be the successive minima of the lattice $\mathbb{Z}[\alpha] \subset \mathbb{R}^{n}$ (with respect to the Euclidean norm on \mathbb{R}^{n}, say). We know that $\lambda_{1}(\alpha) \simeq_{n} 1$. Since $1, \alpha, \ldots, \alpha^{n-1}$ are linearly independent, it is also clear that $\lambda_{i}(\alpha)<_{n}|\alpha|^{i}$ for $i=1, \ldots, n-1$. Show that

$$
\lim _{\varepsilon \rightarrow 0} \mathbb{P}_{\text {inf }}\left(\lambda_{i}(\alpha) \geqslant \varepsilon|\alpha|^{i} \text { for } i=1, \ldots, n-1 \mid \alpha \text { as above }\right)=1
$$

(In particular, assuming ε is small enough, for a positive proportion of α, we have $\lambda_{i}(\alpha) \geqslant \varepsilon|\alpha|^{i}$ for $i=1, \ldots, n-1$. - "The lattice $\mathbb{Z}[\alpha]$ is almost never balanced.")

Solution. If $\operatorname{disc}(\alpha) \geqslant \varepsilon|\alpha|^{n(n-1)}$, then $\operatorname{disc}(\alpha)^{1 / 2} \simeq_{n} \lambda_{1}(\alpha) \cdots \lambda_{n}(\alpha)$ and $\lambda_{i}(\alpha) \ll_{n}|\alpha|^{i}$ together imply that $\lambda_{i}(\alpha)>_{n} \varepsilon|\alpha|^{i}$, so the result follows from the previous exercise.

Problem 6 (completely unnecessary for us). a) Show that if a monic polynomial $f(X)=X^{3}+a_{2} X^{2}+a_{1} X+a_{0} \in \mathbb{R}[X]$ has a root $x \in \mathbb{C}$ with $|x|=1$, then

$$
1+a_{2}+a_{1}+a_{0}=0
$$

or

$$
-1+a_{2}-a_{1}+a_{0}=0
$$

or

$$
a_{2} a_{0}-a_{0}^{2}-a_{1}+1=0 .
$$

Solution. The first two equations are equivalent to $f(1)=0$ and $f(-1)=0$, respectively. Otherwise, $f(X)$ must have two complex
conjugate roots x, \bar{x} on the unit circle. This implies that $f(X)$ must be divisible by $(X-x)(X-\bar{x})=X^{2}-(x+\bar{x}) X+x \bar{x}=X^{2}-2 \Re(x) X+1$, so by a polynomial of the form $X^{2}+t X+1$. Let

$$
f(X)=\left(X^{2}+t X+1\right)\left(X+b_{0}\right) .
$$

Hence, $f(X)=X^{3}+\left(b_{0}+t\right) X^{2}+\left(t b_{0}+1\right) X+b_{0}$, so indeed

$$
a_{2} a_{0}-a_{0}^{2}-a_{1}+1=\left(b_{0}+t\right) b_{0}-b_{0}^{2}-\left(t b_{0}+1\right)+1=0 .
$$

b) (if you know algebraic geometry or resultants) Show that for any $n \geqslant 1$, there is a nonzero polynomial $C\left(A_{n-1}, \ldots, A_{0}\right) \in \mathbb{Z}\left[A_{n-1}, \ldots, A_{0}\right]$ such that for any monic polynomial $f(X)=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0} \in$ $\mathbb{R}[X]$, which has a root $x \in \mathbb{C}$ with $|x|=1$, we have $C\left(a_{n-1}, \ldots, a_{0}\right)=$ 0 . (And how would you compute such a polynomial C ?)

Solution. As in part a), we have $f(1)=0$, or $f(-1)=0$, or $f(X)$ is divisible by a polynomial of the form $X^{2}+t X+1$. It suffices to construct a nonzero polynomial $D\left(A_{n-1}, \ldots, A_{0}\right)$ such that $D\left(a_{n-1}, \ldots, a_{0}\right)=0$ whenever $f(X)$ is divisible by a polynomial of the form $X^{2}+t X+1$. (Take $C=D \cdot\left(1+A_{n-1}+\cdots+A_{0}\right)\left((-1)^{n}+A_{n-1}(-1)^{n-1}+\cdots+A_{0}\right)$.) Consider the morphism $\mathbb{A}^{1} \times \mathbb{A}^{n-2} \rightarrow \mathbb{A}^{n}$ sending $\left(t,\left(b_{n-3}, \ldots, b_{0}\right)\right)$ to $\left(a_{n-1}, \ldots, a_{0}\right)$, where $\left(X^{2}+t X+1\right)\left(X^{n-2}+b_{n-3} X^{n-3}+\cdots+b_{0}\right)=$ $X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0}$. Its image is constructible and has (at most) dimension $1+n-2 \leqslant n-1$, so it must be contained in a proper subvariety of \mathbb{A}^{n}. Therefore, there is a nonzero polynomial $D\left(A_{n-1}, \ldots, A_{0}\right)$ which vanishes on the entire image.

Problem 7. An isomorphism of graphs $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a bijection $f: V \rightarrow V^{\prime}$ between the sets of vertices such that $(x, y) \in E$ if and only if $(f(x), f(y)) \in E^{\prime}$. Consider the set of undirected graphs G with n vertices (without loops, i.e., without edges of the form (x, x)), up to isomorphism. Show that

$$
\sum_{G} \frac{1}{\# \operatorname{Aut}(G)}=\frac{2^{n(n-1) / 2}}{n!}
$$

Solution. Let $V=\{1, \ldots, n\}$ and let $F=\binom{V}{2}$ be the set of two-element subsets of V (the set of potential edges). Let $X=2^{F}$ be the set of subsets E of F (the set of possible edge sets). Let the symmetric group S_{n} act
in the natural way on F, and therefore on X. Graphs up to isomorphism correspond to S_{n}-orbits in X. The stabilizer of $E \in X$ is the automorphism group of $G=(V, E)$. Hence, the orbit-stabilizer theorem implies that

$$
\sum_{G} \frac{1}{\# \operatorname{Aut}(G)}=\frac{\# X}{\# S_{n}}=\frac{2^{n(n-1) / 2}}{n!}
$$

