Math 286X: Arithmetic Statistics Spring 2020

Problem set #3

Problem 1. Let $A \subset \mathbb{R}^n$ be a bounded set whose boundary is Lipschitz. Let $k \ge 1$ and $y \in (\mathbb{Z}/k\mathbb{Z})^n$. Show that

$$\lim_{T \to \infty} \mathbb{P}(x \equiv y \mod k \mid x \in (T \cdot A) \cap \mathbb{Z}^n) = \frac{1}{k^n}.$$

Solution. Apply Widmer's theorem to the sets $T \cdot A$ and $\frac{1}{k} \cdot (T \cdot A - y)$. Use that $\operatorname{vol}(T \cdot A) / \operatorname{vol}(\frac{1}{k} \cdot (T \cdot A - y)) = k^{-n}$. If ∂A is (M, L)-Lipschitz, then $\partial(T \cdot A)$ is (M, TL)-Lipschitz and $\partial(\frac{1}{k} \cdot (T \cdot A - y))$ is $(M, \frac{T}{k} \cdot L)$ -Lipschitz. \Box

Problem 2. Find a compact subset $A \subset \mathbb{R}$ with positive volume, but so that

$$\liminf_{T \to \infty} \#((T \cdot A) \cap \mathbb{Z}) = 0.$$

Solution. Choose an enumeration a_1, a_2, \ldots of the rational numbers in the interval [0, 1]. Let $A = [0, 1] \setminus \bigcup_{n \ge 1} B_{2^{-n-2}}(a_n)$, where $B_r(x)$ is the open ball of radius r centered at x. By the monotone convergence theorem, A is measurable and has volume at least $1 - \sum_{n=1}^{\infty} 2^{-n-1} = \frac{1}{2} > 0$. On the other hand, for any $T \in \mathbb{Z}$, we have $(T \cdot A) \cap \mathbb{Z} = \emptyset$ because we have removed all rational numbers from A.

Problem 3. Identify the space V_n of monic polynomials of degree n with \mathbb{R}^n by sending $f(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_0 \in \mathbb{R}[X]$ to (a_{n-1}, \ldots, a_0) . Consider the map $\varphi_n : \mathbb{R}^n \to V_n \cong \mathbb{R}^n$ sending $x = (x_1, \ldots, x_n)$ to $f(X) = \prod_i (X - x_i)$.

a) Show that the Jacobian determinant at $x \in \mathbb{R}^n$ is $(-1)^n \prod_{i < j} (x_i - x_j)$.

Solution. We have $\partial_i \varphi_n(x) = -\prod_{j \neq i} (X - x_j)$. Now, subtract the first partial derivative ∂_1 from all other partial derivatives ∂_i with i > 1. We get $\partial_i \varphi_n(x) - \partial_1 \varphi_n(x) = (x_1 - x_i) \prod_{j \neq i,n} (X - x_j)$, which is a polynomial of degree n - 2. The X^{n-1} -coefficient in $\partial_1 \varphi_n(x)$ is -1. Hence, the Jacobian determinant of φ_n at x is $(-1)^n \prod_{1 < i} (x_1 - x_i)$ times the Jacobian determinant of φ_{n-1} at (x_2, \ldots, x_n) . The claim follows by induction. b) Show that the volume of the image $\varphi_3([-1,1]^3) \subset V_3 \cong \mathbb{R}^3$ is 16/45. (Use a computer if you like.)

Solution. Each (a_2, a_1, a_0) in the image has exactly one preimage $(x_1, x_2, x_3) \in [-1, 1]^3$ with $x_1 \ge x_2 \ge x_3$. The Jacobian determinant at such a point has absolute value $(x_1 - x_2)(x_1 - x_3)(x_2 - x_3)$. Therefore,

$$\operatorname{vol}(\varphi_3([-1,1]^3))$$

= $\int_{-1}^1 \int_{-1}^{x_1} \int_{-1}^{x_2} (x_1 - x_2)(x_1 - x_3)(x_2 - x_3) dx_3 dx_2 dx_1$
= $\frac{16}{45}.$

Problem 4. Fix some $n \ge 2$. Order the algebraic integers $\alpha \in \overline{\mathbb{Z}}$ of degree n and trace 0 by length $|\alpha|$. Let $\operatorname{disc}(\alpha)$ be the discriminant of the ring $\mathbb{Z}[\alpha]$. We always have $|\operatorname{disc}(\alpha)| \ll_n |\alpha|^{n(n-1)}$. Show that

 $\lim_{\varepsilon \to 0} \mathbb{P}(|\operatorname{disc}(\alpha)| \ge \varepsilon |\alpha|^{n(n-1)} | \alpha \text{ as above}) = 1.$

Solution. We separately consider each possible signature (r_1, r_2) . Let $A = \{x \in (\mathbb{R}^{r_1} \times \mathbb{C}^{r_2})^0 \mid |x| \leq 1\}$, let $I = \{x \in \mathbb{R}^{r_1} \times \mathbb{C}^{r_2} \mid x_i = x_j \text{ for some } i \neq j\}$ and let $B_{\varepsilon} = \{x \in (\mathbb{R}^{r_1} \times \mathbb{C}^{r_2})^0 \mid \det(M(x))^2 \geq \varepsilon |x|^{n(n-1)}\}$, where M(x) is the $n \times n$ -matrix whose columns are the vectors $1, x, \ldots, x^{n-1} \in \mathbb{R}^{r_1} \times \mathbb{C}^{r_2} \cong \mathbb{R}^n$. Note that $\det(M(\lambda x))^2 = \lambda^{n(n-1)} \det(M(x))^2$, so $\lambda B_{\varepsilon} = B_{\varepsilon}$ for any $\lambda \in \mathbb{R}^{\times}$. Furthermore, $\det(M(x)) = 0$ if and only if $x \in I$. Consider the map

$$\varphi: (\mathbb{R}^{r_1} \times \mathbb{C}^{r_2})^0 \to \left\{ \begin{array}{c} \text{monic } f(X) \in \mathbb{R}[X] \text{ of degree } n \\ \text{with } X^{n-1} \text{-coefficient } 0 \end{array} \right\} \cong \mathbb{R}^{n-1}$$

sending x to $\prod_i (X - x_i)$. Then,

$$#\{\alpha \in \overline{\mathbb{Z}} \text{ of signature } (r_1, r_2) \text{ and trace 0 and length } |\alpha| \leq S\}$$
$$= n \cdot \#\{\text{irreducible } f(X) \in \varphi(S \cdot A) \cap \mathbb{Z}[X]\}$$
$$= n \cdot \#\{\varphi(S \cdot A) \cap \mathbb{Z}[X]\} + o(S^{(n-1)(n+2)/2})$$

and

$$\# \left\{ \begin{array}{l} \alpha \in \overline{\mathbb{Z}} \text{ of signature } (r_1, r_2) \text{ and trace } 0\\ \text{and length } |\alpha| \leqslant S \text{ and } |\operatorname{disc}(\alpha)| \leqslant \varepsilon |\alpha|^{n(n-1)} \end{array} \right\} \\ = n \cdot \# \{ \text{irreducible } f(X) \in \varphi(S \cdot (A \cap B_{\varepsilon})) \cap \mathbb{Z}[X] \} \\ = n \cdot \# \{ \varphi(S \cdot (A \cap B_{\varepsilon})) \cap \mathbb{Z}[X] \} + o(S^{(n-1)(n+2)/2}). \end{aligned}$$

The boundaries of A and $A \cap B_{\varepsilon}$ are Lipschitz (the boundary of B_{ε} is contained in the set of x such that $\det(M(x))^2 = \varepsilon |x|^{n(n-1)}$, which is contained in the union of $r_1 + r_2$ zero sets of nonzero polynomials). The set $A \cap I$ is also Lipschitz. As we've seen in class, this implies that the boundaries of $\varphi(A)$ and $\varphi(A \cap B_{\varepsilon})$ are Lipschitz. By a corollary to Widmer's theorem, it follows that

$$\mathbb{P}(|\operatorname{disc}(\alpha)| \ge \varepsilon |\alpha|^{n(n-1)} | \alpha \text{ as above}) = \frac{\operatorname{vol}(A \cap B_{\varepsilon})}{\operatorname{vol}(A)}.$$

We have $B_{\varepsilon} \subseteq B_{\varepsilon'}$ for $\varepsilon > \varepsilon'$ and $\bigcup_{\varepsilon > 0} (A \cap B_{\varepsilon}) = A \setminus I$. Hence, $\lim_{\varepsilon \to 0} \operatorname{vol}(A \cap B_{\varepsilon}) = \operatorname{vol}(A \setminus I) = \operatorname{vol}(I)$.

Problem 5. Fix some $n \ge 2$. Order the algebraic integers $\alpha \in \mathbb{Z}$ of degree n and trace 0 by length $|\alpha|$. Let $\lambda_1(\alpha) \le \cdots \le \lambda_n(\alpha)$ be the successive minima of the lattice $\mathbb{Z}[\alpha] \subset \mathbb{R}^n$ (with respect to the Euclidean norm on \mathbb{R}^n , say). We know that $\lambda_1(\alpha) \simeq_n 1$. Since $1, \alpha, \ldots, \alpha^{n-1}$ are linearly independent, it is also clear that $\lambda_i(\alpha) \ll_n |\alpha|^i$ for $i = 1, \ldots, n-1$. Show that

$$\lim_{\varepsilon \to 0} \mathbb{P}_{\inf}(\lambda_i(\alpha) \ge \varepsilon |\alpha|^i \text{ for } i = 1, \dots, n-1 \mid \alpha \text{ as above}) = 1.$$

(In particular, assuming ε is small enough, for a positive proportion of α , we have $\lambda_i(\alpha) \ge \varepsilon |\alpha|^i$ for $i = 1, \ldots, n-1$. — "The lattice $\mathbb{Z}[\alpha]$ is almost never balanced.")

Solution. If disc(α) $\geq \varepsilon |\alpha|^{n(n-1)}$, then disc(α)^{1/2} $\approx_n \lambda_1(\alpha) \cdots \lambda_n(\alpha)$ and $\lambda_i(\alpha) \ll_n |\alpha|^i$ together imply that $\lambda_i(\alpha) \gg_n \varepsilon |\alpha|^i$, so the result follows from the previous exercise.

Problem 6 (completely unnecessary for us). a) Show that if a monic polynomial $f(X) = X^3 + a_2X^2 + a_1X + a_0 \in \mathbb{R}[X]$ has a root $x \in \mathbb{C}$ with |x| = 1, then

$$1 + a_2 + a_1 + a_0 = 0$$

or

 $-1 + a_2 - a_1 + a_0 = 0$

or

$$a_2a_0 - a_0^2 - a_1 + 1 = 0$$

Solution. The first two equations are equivalent to f(1) = 0 and f(-1) = 0, respectively. Otherwise, f(X) must have two complex

conjugate roots x, \overline{x} on the unit circle. This implies that f(X) must be divisible by $(X-x)(X-\overline{x}) = X^2 - (x+\overline{x})X + x\overline{x} = X^2 - 2\Re(x)X + 1$, so by a polynomial of the form $X^2 + tX + 1$. Let

$$f(X) = (X^2 + tX + 1)(X + b_0)$$

Hence, $f(X) = X^3 + (b_0 + t)X^2 + (tb_0 + 1)X + b_0$, so indeed

$$a_2a_0 - a_0^2 - a_1 + 1 = (b_0 + t)b_0 - b_0^2 - (tb_0 + 1) + 1 = 0.$$

b) (if you know algebraic geometry or resultants) Show that for any $n \ge 1$, there is a nonzero polynomial $C(A_{n-1}, \ldots, A_0) \in \mathbb{Z}[A_{n-1}, \ldots, A_0]$ such that for any monic polynomial $f(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_0 \in \mathbb{R}[X]$, which has a root $x \in \mathbb{C}$ with |x| = 1, we have $C(a_{n-1}, \ldots, a_0) =$ 0. (And how would you compute such a polynomial C?)

Solution. As in part a), we have f(1) = 0, or f(-1) = 0, or f(X) is divisible by a polynomial of the form $X^2 + tX + 1$. It suffices to construct a nonzero polynomial $D(A_{n-1}, \ldots, A_0)$ such that $D(a_{n-1}, \ldots, a_0) = 0$ whenever f(X) is divisible by a polynomial of the form $X^2 + tX + 1$. (Take $C = D \cdot (1 + A_{n-1} + \cdots + A_0)((-1)^n + A_{n-1}(-1)^{n-1} + \cdots + A_0)$.) Consider the morphism $\mathbb{A}^1 \times \mathbb{A}^{n-2} \to \mathbb{A}^n$ sending $(t, (b_{n-3}, \ldots, b_0))$ to (a_{n-1}, \ldots, a_0) , where $(X^2 + tX + 1)(X^{n-2} + b_{n-3}X^{n-3} + \cdots + b_0) = X^n + a_{n-1}X^{n-1} + \cdots + a_0$. Its image is constructible and has (at most) dimension $1 + n - 2 \leq n - 1$, so it must be contained in a proper subvariety of \mathbb{A}^n . Therefore, there is a nonzero polynomial $D(A_{n-1}, \ldots, A_0)$ which vanishes on the entire image.

Problem 7. An isomorphism of graphs G = (V, E) and G' = (V', E') is a bijection $f : V \to V'$ between the sets of vertices such that $(x, y) \in E$ if and only if $(f(x), f(y)) \in E'$. Consider the set of undirected graphs Gwith n vertices (without loops, i.e., without edges of the form (x, x)), up to isomorphism. Show that

$$\sum_{G} \frac{1}{\# \operatorname{Aut}(G)} = \frac{2^{n(n-1)/2}}{n!}.$$

Solution. Let $V = \{1, \ldots, n\}$ and let $F = \binom{V}{2}$ be the set of two-element subsets of V (the set of potential edges). Let $X = 2^F$ be the set of subsets E of F (the set of possible edge sets). Let the symmetric group S_n act

in the natural way on F, and therefore on X. Graphs up to isomorphism correspond to S_n -orbits in X. The stabilizer of $E \in X$ is the automorphism group of G = (V, E). Hence, the orbit-stabilizer theorem implies that

$$\sum_{G} \frac{1}{\# \operatorname{Aut}(G)} = \frac{\#X}{\#S_n} = \frac{2^{n(n-1)/2}}{n!}.$$