
Math 286X: Arithmetic Statistics

Spring 2020

Problem set #3

Problem 1. Let A Ă Rn be a bounded set whose boundary is Lipschitz.
Let k ě 1 and y P pZ{kZqn. Show that

lim
TÑ8

Ppx ” y mod k | x P pT ¨Aq X Znq “
1

kn
.

Solution. Apply Widmer’s theorem to the sets T ¨A and 1
k ¨ pT ¨A´ yq. Use

that volpT ¨ Aq{ volp 1k ¨ pT ¨ A ´ yqq “ k´n. If BA is pM,Lq-Lipschitz, then
BpT ¨Aq is pM,TLq-Lipschitz and Bp 1k ¨ pT ¨A´yqq is pM, Tk ¨Lq-Lipschitz.

Problem 2. Find a compact subset A Ă R with positive volume, but so
that

lim inf
TÑ8

#ppT ¨Aq X Zq “ 0.

Solution. Choose an enumeration a1, a2, . . . of the rational numbers in the
interval r0, 1s. Let A “ r0, 1sz

Ť

ně1B2´n´2panq, where Brpxq is the open
ball of radius r centered at x. By the monotone convergence theorem, A is
measurable and has volume at least 1´

ř8
n“1 2´n´1 “ 1

2 ą 0. On the other
hand, for any T P Z, we have pT ¨Aq X Z “ H because we have removed all
rational numbers from A.

Problem 3. Identify the space Vn of monic polynomials of degree n with
Rn by sending fpXq “ Xn ` an´1X

n´1 ` ¨ ¨ ¨ ` a0 P RrXs to pan´1, . . . , a0q.
Consider the map ϕn : Rn Ñ Vn – Rn sending x “ px1, . . . , xnq to fpXq “
ś

ipX ´ xiq.

a) Show that the Jacobian determinant at x P Rn is p´1qn
ś

iăjpxi´xjq.

Solution. We have Biϕnpxq “ ´
ś

j‰ipX´xjq. Now, subtract the first
partial derivative B1 from all other partial derivatives Bi with i ą 1.
We get Biϕnpxq ´ B1ϕnpxq “ px1 ´ xiq

ś

j‰i,npX ´ xjq, which is a

polynomial of degree n ´ 2. The Xn´1-coefficient in B1ϕnpxq is ´1.
Hence, the Jacobian determinant of ϕn at x is p´1qn

ś

1ăipx1 ´ xiq
times the Jacobian determinant of ϕn´1 at px2, . . . , xnq. The claim
follows by induction.
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b) Show that the volume of the image ϕ3pr´1, 1s3q Ă V3 – R3 is 16{45.
(Use a computer if you like.)

Solution. Each pa2, a1, a0q in the image has exactly one preimage px1, x2, x3q P
r´1, 1s3 with x1 ě x2 ě x3. The Jacobian determinant at such a point
has absolute value px1 ´ x2qpx1 ´ x3qpx2 ´ x3q. Therefore,

volpϕ3pr´1, 1s3qq

“

ż 1

´1

ż x1

´1

ż x2

´1
px1 ´ x2qpx1 ´ x3qpx2 ´ x3qdx3dx2dx1

“
16

45
.

Problem 4. Fix some n ě 2. Order the algebraic integers α P Z of degree n
and trace 0 by length |α|. Let discpαq be the discriminant of the ring Zrαs.
We always have |discpαq| !n |α|

npn´1q. Show that

lim
εÑ0

Pp|discpαq| ě ε|α|npn´1q | α as aboveq “ 1.

Solution. We separately consider each possible signature pr1, r2q. Let A “
tx P pRr1 ˆCr2q0 | |x| ď 1u, let I “ tx P Rr1 ˆCr2 | xi “ xj for some i ‰ ju
and let Bε “ tx P pRr1ˆCr2q0 | detpMpxqq2 ě ε|x|npn´1qu, whereMpxq is the
nˆn-matrix whose columns are the vectors 1, x, . . . , xn´1 P Rr1ˆCr2 – Rn.
Note that detpMpλxqq2 “ λnpn´1q detpMpxqq2, so λBε “ Bε for any λ P Rˆ.
Furthermore, detpMpxqq “ 0 if and only if x P I. Consider the map

ϕ : pRr1 ˆ Cr2q0 Ñ

"

monic fpXq P RrXs of degree n
with Xn´1-coefficient 0

*

– Rn´1

sending x to
ś

ipX ´ xiq. Then,

#tα P Z of signature pr1, r2q and trace 0 and length |α| ď Su

“ n ¨#tirreducible fpXq P ϕpS ¨Aq X ZrXsu

“ n ¨#tϕpS ¨Aq X ZrXsu ` opSpn´1qpn`2q{2q

and

#

"

α P Z of signature pr1, r2q and trace 0

and length |α| ď S and | discpαq| ď ε|α|npn´1q

*

“ n ¨#tirreducible fpXq P ϕpS ¨ pAXBεqq X ZrXsu

“ n ¨#tϕpS ¨ pAXBεqq X ZrXsu ` opSpn´1qpn`2q{2q.
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The boundaries of A and AXBε are Lipschitz (the boundary of Bε is con-
tained in the set of x such that detpMpxqq2 “ ε|x|npn´1q, which is contained
in the union of r1 ` r2 zero sets of nonzero polynomials). The set A X I is
also Lipschitz. As we’ve seen in class, this implies that the boundaries of
ϕpAq and ϕpAXBεq are Lipschitz. By a corollary to Widmer’s theorem, it
follows that

Pp|discpαq| ě ε|α|npn´1q | α as aboveq “
volpAXBεq

volpAq
.

We haveBε Ď Bε1 for ε ą ε1 and
Ť

εą0pAXBεq “ AzI. Hence, limεÑ0 volpAX
Bεq “ volpAzIq “ volpIq.

Problem 5. Fix some n ě 2. Order the algebraic integers α P Z of degree n
and trace 0 by length |α|. Let λ1pαq ď ¨ ¨ ¨ ď λnpαq be the successive minima
of the lattice Zrαs Ă Rn (with respect to the Euclidean norm on Rn, say).
We know that λ1pαq —n 1. Since 1, α, . . . , αn´1 are linearly independent, it
is also clear that λipαq !n |α|

i for i “ 1, . . . , n´ 1. Show that

lim
εÑ0

Pinfpλipαq ě ε|α|i for i “ 1, . . . , n´ 1 | α as aboveq “ 1.

(In particular, assuming ε is small enough, for a positive proportion of α,
we have λipαq ě ε|α|i for i “ 1, . . . , n ´ 1. — “The lattice Zrαs is almost
never balanced.”)

Solution. If discpαq ě ε|α|npn´1q, then discpαq1{2 —n λ1pαq ¨ ¨ ¨λnpαq and
λipαq !n |α|

i together imply that λipαq "n ε|α|
i, so the result follows from

the previous exercise.

Problem 6 (completely unnecessary for us). a) Show that if a monic poly-
nomial fpXq “ X3 ` a2X

2 ` a1X ` a0 P RrXs has a root x P C with
|x| “ 1, then

1` a2 ` a1 ` a0 “ 0

or
´1` a2 ´ a1 ` a0 “ 0

or
a2a0 ´ a

2
0 ´ a1 ` 1 “ 0.

Solution. The first two equations are equivalent to fp1q “ 0 and
fp´1q “ 0, respectively. Otherwise, fpXq must have two complex
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conjugate roots x, x on the unit circle. This implies that fpXq must
be divisible by pX´xqpX´xq “ X2´px`xqX`xx “ X2´2<pxqX`1,
so by a polynomial of the form X2 ` tX ` 1. Let

fpXq “ pX2 ` tX ` 1qpX ` b0q.

Hence, fpXq “ X3 ` pb0 ` tqX
2 ` ptb0 ` 1qX ` b0, so indeed

a2a0 ´ a
2
0 ´ a1 ` 1 “ pb0 ` tqb0 ´ b

2
0 ´ ptb0 ` 1q ` 1 “ 0.

b) (if you know algebraic geometry or resultants) Show that for any n ě 1,
there is a nonzero polynomial CpAn´1, . . . , A0q P ZrAn´1, . . . , A0s such
that for any monic polynomial fpXq “ Xn ` an´1X

n´1 ` ¨ ¨ ¨ ` a0 P
RrXs, which has a root x P C with |x| “ 1, we have Cpan´1, . . . , a0q “
0. (And how would you compute such a polynomial C?)

Solution. As in part a), we have fp1q “ 0, or fp´1q “ 0, or fpXq is di-
visible by a polynomial of the form X2`tX`1. It suffices to construct
a nonzero polynomial DpAn´1, . . . , A0q such that Dpan´1, . . . , a0q “ 0
whenever fpXq is divisible by a polynomial of the form X2 ` tX ` 1.
(Take C “ D ¨ p1`An´1`¨ ¨ ¨`A0qpp´1qn`An´1p´1qn´1`¨ ¨ ¨`A0q.)

Consider the morphism A1 ˆAn´2 Ñ An sending pt, pbn´3, . . . , b0qq to
pan´1, . . . , a0q, where pX2 ` tX ` 1qpXn´2 ` bn´3X

n´3 ` ¨ ¨ ¨ ` b0q “
Xn ` an´1X

n´1 ` ¨ ¨ ¨ ` a0. Its image is constructible and has (at
most) dimension 1 ` n ´ 2 ď n ´ 1, so it must be contained in a
proper subvariety of An. Therefore, there is a nonzero polynomial
DpAn´1, . . . , A0q which vanishes on the entire image.

Problem 7. An isomorphism of graphs G “ pV,Eq and G1 “ pV 1, E1q is
a bijection f : V Ñ V 1 between the sets of vertices such that px, yq P E
if and only if pfpxq, fpyqq P E1. Consider the set of undirected graphs G
with n vertices (without loops, i.e., without edges of the form px, xq), up to
isomorphism. Show that

ÿ

G

1

# AutpGq
“

2npn´1q{2

n!
.

Solution. Let V “ t1, . . . , nu and let F “
`

V
2

˘

be the set of two-element
subsets of V (the set of potential edges). Let X “ 2F be the set of subsets
E of F (the set of possible edge sets). Let the symmetric group Sn act
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in the natural way on F , and therefore on X. Graphs up to isomorphism
correspond to Sn-orbits in X. The stabilizer of E P X is the automorphism
group of G “ pV,Eq. Hence, the orbit–stabilizer theorem implies that

ÿ

G

1

# AutpGq
“

#X

#Sn
“

2npn´1q{2

n!
.
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