Math 286X: Arithmetic Statistics

Spring 2020

Problem set \#2

Problem 1. Let $L \mid K$ be a finite Galois extension of number fields with Galois group G. Order the primes \mathfrak{P} of L by $\operatorname{Nm}(\mathfrak{P} \cap K)$. Fix some $g \in G$. Show that

$$
\mathbb{P}(\operatorname{Frob}(\mathfrak{P} \mid \mathfrak{P} \cap K)=g \mid \mathfrak{P} \text { prime of } L)=\frac{\frac{1}{\operatorname{ord}(g)}}{\sum_{g^{\prime} \in G} \frac{1}{\operatorname{ord}\left(g^{\prime}\right)}} .
$$

Solution. Let $C \subseteq G$ be the conjugacy class containing g. For any prime \mathfrak{p} of K whose Frobenius conjugacy class is C, the number of primes \mathfrak{P} lying above it is $[G: D(\mathfrak{p})$], where $D(\mathfrak{p})$ is the decomposition group of any prime \mathfrak{P} lying above \mathfrak{p}. The decomposition group is generated by an element g^{\prime} of the conjugacy class C, so its index in G is $[G: D(\mathfrak{p})]=$ $\# G / \operatorname{ord}\left(g^{\prime}\right)=\# G / \operatorname{ord}(g)$. The number of primes \mathfrak{P} lying above \mathfrak{p} whose Frobenius automorphism is g is therefore $\frac{\nexists G}{\operatorname{ord}(g) \cdot \# C}$. Hence, for $T \rightarrow \infty$

$$
\begin{align*}
& \#\{\mathfrak{P} \mid \operatorname{Frob}(\mathfrak{P} \mid \mathfrak{P} \cap K)=g \text { and } \operatorname{Nm}(\mathfrak{P} \cap K) \leqslant T\} \\
& =\#\{\mathfrak{p} \mid \operatorname{Frob}(\mathfrak{p})=C \text { and } \operatorname{Nm}(\mathfrak{p}) \leqslant T\} \cdot \frac{\# G}{\operatorname{ord}(g) \cdot \# C} \\
& \sim \#\{\mathfrak{p} \mid \operatorname{Nm}(\mathfrak{p}) \leqslant T\} \cdot \frac{\# C}{\# G} \cdot \frac{\# G}{\operatorname{ord}(g) \cdot \# C} \tag{1}\\
& =\#\{\mathfrak{p} \mid \operatorname{Nm}(\mathfrak{p}) \leqslant T\} \cdot \frac{1}{\operatorname{ord}(g)}
\end{align*}
$$

by the Chebotarev density theorem. Summing over all $g^{\prime} \in G$,

$$
\begin{align*}
& \#\{\mathfrak{P} \mid \operatorname{Nm}(\mathfrak{P} \cap K) \leqslant T\} \\
& \sim \#\{\mathfrak{p} \mid \operatorname{Nm}(\mathfrak{p}) \leqslant T\} \cdot \sum_{g^{\prime} \in G} \frac{1}{\operatorname{ord}\left(g^{\prime}\right)} . \tag{2}
\end{align*}
$$

Dividing (1) by (2) implies the claim.
Problem 2. Let Λ be a full lattice in \mathbb{R}^{2} and let K be a centrally symmetric convex compact subset of \mathbb{R}^{2}. Let the successive minima be $\lambda_{1} \leqslant \lambda_{2}$. Show
that the lattice Λ (not just the vector space \mathbb{R}^{2}) has a basis $\left(l_{1}, l_{2}\right)$ such that $l_{1} \in \lambda_{1} K$ and $l_{2} \in \lambda_{2} K$.
Hint: Use Pick's theorem.
Solution. Assume without loss of generality that $\Lambda=\mathbb{Z}^{2} \subset \mathbb{R}^{2}$. Pick any nonzero vector $l_{1} \in \mathbb{Z}^{2} \cap \lambda_{1} K$. Since $\mathbb{Z}^{2} \cap \tau K=0$ for all $0 \leqslant \tau<\lambda_{1}$, we know that l_{1} is a primitive vector in \mathbb{Z}^{2}. Then, pick $l_{2} \in \mathbb{Z}^{2} \cap \lambda_{2} K$ such that the triangle spanned l_{1} and l_{2} has minimal (nonzero) area. Since the convex set $\lambda_{2} K$ contains $0, l_{1}, l_{2}$ (and therefore the entire triangle), this means that the triangle cannot contain any lattice points other than the corners $0, l_{1}$, l_{2}. By Pick's theorem, its area is therefore $\frac{3}{2}-1=\frac{1}{2}$. Hence, the area of the parallelogram spanned by l_{1} and l_{2} (the covolume of the sublattice of \mathbb{Z}^{2} spanned by l_{1} and $\left.l_{2}\right)$ is 1 , which implies that l_{1} and l_{2} span \mathbb{Z}^{2}.

Problem 3. Let K be the smallest centrally symmetric convex subset of \mathbb{R}^{3} that contains $(1,0,0),(0,1,0)$, and $(1,1,2)$. Let $\lambda_{1} \leqslant \lambda_{2} \leqslant \lambda_{3}$ be the successive minima of $\Lambda=\mathbb{Z}^{3}$. Show that the vectors in $\lambda_{3} K \cap \Lambda$ don't generate the lattice Λ (only the vector space \mathbb{R}^{3}).

Solution. Clearly, $\lambda_{3} \leqslant 1$, because K contains the linearly independent vectors $(1,0,0),(0,1,0),(1,1,2)$. We will show that $K \cap \mathbb{Z}^{3}$ generates only the sublattice Λ^{\prime} of points $(x, y, z) \in \mathbb{Z}^{3}$ generated by $(1,0,0),(0,1,0),(1,1,2)$, i.e., the set of points such that $2 \mid z$. The set K consists exactly of the points of the form

$$
\begin{array}{r}
(x, y, z)=\alpha(1,0,0)+\beta(0,1,0)+\gamma(1,1,2)=(\alpha+\gamma, \beta+\gamma, 2 \gamma) \\
\text { with }|\alpha|+|\beta|+|\gamma| \leqslant 1 .
\end{array}
$$

Consider a lattice point in K, so

$$
\alpha+\gamma \in \mathbb{Z}, \quad \beta+\gamma \in \mathbb{Z}, \quad 2 \gamma \in \mathbb{Z} .
$$

If $\alpha+\gamma \neq 0$, then $|\alpha|+|\gamma| \geqslant|\alpha+\gamma| \geqslant 1$, implying that $\beta=0$. Hence, $\gamma \in \mathbb{Z}$ and therefore $\alpha \in \mathbb{Z}$. Indeed, $(x, y, z) \in \Lambda^{\prime}$. Proceed similarly if $\beta+\gamma \neq 0$. It only remains to consider the case $\alpha+\gamma=\beta+\gamma=0$, so $\alpha=\beta=-\gamma$. Remember that $1 \geqslant|\alpha|+|\beta|+|\gamma|=3|\gamma|$. Hence, $2 \gamma \in \mathbb{Z}$ can only happen when $\gamma=0$, and hence $\alpha=\beta=0$.

Problem 4. Let $K \subset \mathbb{R}^{2}$ be the closed disc of radius 1 (with respect to the standard Euclidean length $|\cdot|$ on \mathbb{R}^{2}) and let $\Lambda \subset \mathbb{R}^{2}$ be any full lattice with successive minima $\lambda_{1} \leqslant \lambda_{2}$. Show that a basis $\left(l_{1}, l_{2}\right)$ of \mathbb{R}^{2} is reduced $\left(\left|l_{1}\right|=\lambda_{1}\right.$ and $\left.\left|l_{2}\right|=\lambda_{2}\right)$ if and only if $\left|l_{1}\right| \leqslant\left|l_{2}\right|$ and $\left|l_{1} \cdot l_{2}\right| \leqslant \frac{1}{2}\left|l_{1}\right|^{2}$.

Solution. By definition, $\lambda_{1} \leqslant \lambda_{2}$. Furthermore, as seen in class, if $\left(l_{1}, l_{2}\right)$ is a reduced basis, then $\left|l_{2} \pm l_{1}\right| \geqslant\left|l_{2}\right|$, implying that $\left|l_{1} \cdot l_{2}\right| \leqslant \frac{1}{2}\left|l_{1}\right|^{2}$.
Conversely, assume that $\left(l_{1}, l_{2}\right)$ is a basis of \mathbb{R}^{2} such that $\left|l_{1}\right| \leqslant\left|l_{2}\right|$ and $\left|l_{1} \cdot l_{2}\right| \leqslant \frac{1}{2}\left|l_{1}\right|^{2}$. The distance of l_{2} from the line spanned by l_{1} is then at least $\sqrt{\left|l_{2}\right|^{2}-\frac{1}{4}\left|l_{1}\right|^{2}} \geqslant \frac{\sqrt{3}}{2}\left|l_{2}\right|>\frac{1}{2}\left|l_{2}\right|$. Consider any vector $v=x_{1} l_{1}+x_{2} l_{2} \in \Lambda$ $\left(x_{1}, x_{2} \in \mathbb{Z}\right)$ with $|v| \leqslant\left|l_{2}\right|$. Since the distance of l_{2} from the line spanned by l_{1} is larger than $\frac{1}{2}\left|l_{2}\right|$, this can only happen if $\left|x_{2}\right| \leqslant 1$. If $x_{2}=0$, we only obtain the multiples of l_{1}, of which l_{1} is of course shortest. Otherwise, assume without loss of generality that $x_{2}=1$. Since $l_{1} \cdot l_{2} \leqslant \frac{1}{2}\left|l_{1}\right|^{2}$, one sees that the length of v is minimal for $v=l_{2}$. Hence, l_{1} is shortest among all nonzero vectors in Λ and l_{2} is shortest among all vectors in Λ that are not colinear with l_{1}.

Let K be a number field of degree n with r_{1} real embeddings and r_{2} pairs of complex embeddings and with discriminant D_{K}. We consider the successive minima $1=\lambda_{1} \leqslant \cdots \leqslant \lambda_{n}$ of $\mathcal{O}_{K} \subset \mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}}$ with respect to the norm $\left|\left(x_{1}, \ldots, x_{r_{1}}, y_{1}, \ldots, y_{r_{2}}\right)\right|=\max \left(\left|x_{1}\right|, \ldots,\left|x_{r_{1}}\right|,\left|y_{1}\right|, \ldots,\left|y_{r_{2}}\right|\right)$.

Problem 5. Let $K=\mathbb{Q}(\sqrt{p}, \sqrt{q})$ for prime numbers $p<q$.
a) Show that $D_{K}=p^{2} q^{2}$ and $\left[\mathcal{O}_{K}: \mathbb{Z}[\sqrt{p}, \sqrt{q}]\right]=1$.

Solution. A convenient \mathbb{Z}-basis of $\mathbb{Z}[\sqrt{p}, \sqrt{q}]$ is $\omega_{1}=1, \omega_{2}=\sqrt{p}$, $\omega_{3}=\sqrt{q}, \omega_{4}=\sqrt{p q}$. The discriminant of $\mathbb{Z}[\sqrt{p}, \sqrt{q}]$ is the determinant of the matrix $\left(\operatorname{Tr}_{K \mid \mathbb{Q}}\left(\omega_{i} \omega_{j}\right)\right)_{i, j}$. Because $\operatorname{Tr}(1)=4$ and $\operatorname{Tr}(\sqrt{p})=\operatorname{Tr}(\sqrt{q})=\operatorname{Tr}(\sqrt{p q})=0$, this is a diagonal matrix with entries $4,4 p, 4 q, 4 p q$, so its determinant is $16^{2} p^{2} q^{2}$.
By the relative discriminant formula,

$$
D_{K}=D_{\mathbb{Q}(\sqrt{p})}^{2} \cdot \operatorname{Nm}_{\mathbb{Q}(\sqrt{p}) \mid \mathbb{Q}}\left(D_{K \mid \mathbb{Q}(\sqrt{p})}\right),
$$

which is divisible by p^{2} since $D_{\mathbb{Q}(\sqrt{p})}$ is divisible by $p \hat{H}^{1}$ Similarly, D_{K} has to be divisible by q^{2}. The result then follows from

$$
\operatorname{disc}(\mathbb{Z}[\sqrt{p}, \sqrt{q}])=\left[\mathcal{O}_{K}: \mathbb{Z}[\sqrt{p}, \sqrt{q}]\right]^{2} \cdot \operatorname{disc}\left(\mathcal{O}_{K}\right)
$$

b) Show that $\lambda_{2}=\sqrt{p}$ and $\lambda_{3}=\sqrt{q}$ and $\lambda_{4}=\sqrt{p q}$.

[^0]Solution. Since $1, \sqrt{p}, \sqrt{q}, \sqrt{p q}$ are linearly independent elements of \mathcal{O}_{K} with $|1|<|\sqrt{p}|<|\sqrt{q}|<|\sqrt{p q}|$, we clearly have $\lambda_{1}=1, \lambda_{2} \ll \sqrt{p}$, $\lambda_{3} \ll \sqrt{q}, \lambda_{4} \ll \sqrt{p q}$. On the other hand, by Minkowski's second theorem,

$$
p q=D_{K}^{1 / 2}=\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4} \ll 1 \cdot \sqrt{p} \cdot \sqrt{q} \cdot \sqrt{p q}=p q
$$

so the asymptotic inequalities (\ll) must in fact be asymptotic equalities (\asymp).

Problem 6 ($($ Cou19, section 2$])$. We have seen in class that

$$
\lambda_{i}<_{n}\left|D_{K}\right|^{1 /(2(n-i+1))} \quad \text { for } i=2, \ldots, n
$$

In particular,

$$
\lambda_{n}<_{n}\left|D_{K}\right|^{1 / 2}
$$

Show that in fact

$$
\lambda_{n} \ll_{n}\left|D_{K}\right|^{1 /([n / 2\rceil+1)}
$$

Hint: Let l_{1}, \ldots, l_{n} be a reduced basis of \mathbb{R}^{n}, with $\left|l_{i}\right|=\lambda_{i}$. Let $r>n / 2$. Prove that the integers $l_{i} l_{j}$ with $1 \leqslant i, j \leqslant r$ together generate K as a \mathbb{Q} vector space.
Hint 2: Otherwise the r-dimensional space spanned by l_{1}, \ldots, l_{r} would be perpendicular to itself with respect to some nondegenerate symmetric bilinear form on K.

Solution. Assume that the integers $l_{i} l_{j}$ with $1 \leqslant i, j \leqslant r$ do not generate the vector space K. This means that there is a nonzero linear map $f: K \rightarrow \mathbb{Q}$ such that $f\left(l_{i} l_{j}\right)=0$ for all $1 \leqslant i, j \leqslant r$. The bilinear symmetric form $q: K \times K \rightarrow \mathbb{Q}, q(x, y)=f(x y)$ is nondegenerate: For any $x \in K$, we have $q(x, K)=f(x K)=f(K) \neq 0$. On the other hand, $q\left(l_{i}, l_{j}\right)=0$ for all $1 \leqslant i, j \leqslant r$. The dimension of a subspace and its orthogonal complement with respect to a nondegenerate bilinear form add up to the dimension of the ambient space. In our case, $r+r \leqslant n$, contradicting the assumption that $r>n / 2$. Hence, the integers $l_{i} l_{j}$ with $1 \leqslant i, j \leqslant r$ indeed generate the vector space K. In particular, by definition $\lambda_{n} \leqslant \max _{1 \leqslant i, j \leqslant r}\left|l_{i} l_{j}\right| \leqslant \max _{1 \leqslant i, j \leqslant r}\left|l_{i}\right|$. $\left|l_{j}\right|=\lambda_{r}^{2}$. Then, $\left|D_{K}\right|^{1 / 2} \asymp_{n} \lambda_{2} \cdots \lambda_{n} \geqslant \lambda_{n}^{(n-r) / 2+1}$, so $\lambda_{n}<_{n}\left|D_{K}\right|^{1 /(n-r+2)}$. The result follows by choosing $r=\lfloor n / 2\rfloor+1$.

References

[Cou19] Jean-Marc Couveignes. Enumerating number fields. 2019. arXiv: 1907.13617 [math.NT].

[^0]: ${ }^{1}$ For this problem, it would in fact suffice to instead argue that D_{K} is divisible by p because p is ramified because it is already ramified in $\mathbb{Q}(\sqrt{p})$.

