
Math 286X: Arithmetic Statistics

Spring 2020

Solutions to problem set #1

Problem 1. Fix a polynomial fpXq P ZrXs of degree 1 or 2. Show that

Ppfpxq squarefree | x P Zq “
ź

p prime

Ppfpxq ı 0 mod p2 | x P Zq.

(Also think about what goes wrong in the proof for large degrees.)

Solution. If the polynomial fpXq is not squarefree over Q, both sides are
clearly zero. Assume that fpXq is squarefree, which implies that its discrim-
inant is nonzero.

For any M ě 2, we have

Ppfpxq ı 0 mod p2 @p ďM | x P Zq “
ź

pďM

Ppfpxq ı 0 mod p2 | x P Zq

by the Chinese remainder theorem. The right-hand side is decreasing as
M Ñ8, so it must converge. (In fact, it will converge to a positive number
if Ppfpxq ı 0 mod p2 | x P Zq ‰ 0 for all p.)

It remains to show that the left-hand side converges to Ppfpxq squarefreeq.
If fpxq is not squarefree, but fpxq ı 0 mod p2 for p ď M , then fpxq ” 0
mod p2 for some p ą M . It therefore suffices to show that the probability
(Psup) that fpxq ” 0 mod p2 for some p ąM converges to zero as M Ñ8.

Note that the fact that fpXq has degree 1 or 2 implies that fpxq !f T
2

when |x| ď T (for large T ). (The bound might depend on the coefficients of
f , especially the leading coefficient.) Any prime p with fpxq ” 0 mod p2

must therefore satisfy p !f T . Furthermore, if p doesn’t divide the leading
coefficient of f , then fpxq can have at most 2 roots modulo p. If p moreover
doesn’t divide the discriminant of f , then Hensel’s lemma shows that these
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roots lift to unique roots modulo p2. We therefore have

Psuppfpxq ” 0 mod p2 for some p ąM | x P Zq
“ lim sup

TÑ8
Ppfpxq ” 0 mod p2 for some p ąM | x P Z, |x| ď T q

“ lim sup
TÑ8

Ppfpxq ” 0 mod p2 for some T "n p ąM | x P Z, |x| ď T q

! lim sup
TÑ8

ÿ

Măp!nT

Ppfpxq ” 0 mod p2 | x P Z, |x| ď T q

ď lim sup
TÑ8

1

T

ÿ

Măp!nT

#tx P Z{p2Z | fpxq ” 0 mod p2u ¨

ˆ

2T

p2
`Op1q

˙

! lim sup
TÑ8

1

T

ÿ

Măp!nT

ˆ

T

p2
` 1

˙

!
1

M
,

which indeed converges to zero as M Ñ 8. The last inequality used the
fact that the number of primes p !n T is opT q.

If the degree of fpXq was 3, we would need to consider p !n T 3{2. The
number of such primes is far larger than T , so the above approach would
fail. (Our error bound would not converge to any number less than 1 as
T Ñ8.)

Problem 2. For each prime number p, fix a residue class cp P Fp. Show
that

Ppx ı cp mod p @p | x P Zq “ 0.

Solution. For any M ě 2, we have

Psuppx ı cp mod p @p | x P Zq
ď Ppx ı cp mod p @p ďM | x P Zq

“
ź

pďM

Ppx ı cp mod p | x P Zq

“
ź

pďM

ˆ

1´
1

p

˙

.
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This converges to zero as M Ñ8: We can rewrite it as

ź

pďM

ˆ

1´
1

p

˙

“
ź

pďM

1

1` p´1 ` p´2 ` ¨ ¨ ¨

“
1

ř

ně1 only divisible by primes pďM n´1
,

which converges to zero because
ř8
n“1 n

´1 “ 8. (We’re basically computing
1
ζp1q “ 0.)

Problem 3. Fix an odd prime l. Order the quadratic number fields K by
| discpKq|. Show that

PpK unramified at l | K quadratic number fieldq “
l

l ` 1
.

Solution. If t ‰ 1 is a squarefree integer, then Qp
?
tq is unramified at l if and

only if t ı 0 mod l. The probability that t is not divisible by l is 1 ´ l´1.
The probability that t is not divisible by l2 is 1 ´ l´2. Counting quadratic
number fields that are unramified at l just like we did in class (but replacing
the factor 1´ l´2 by 1´ l´1) proves that

PpK unramified at l | K quadratic number fieldq “
1´ l´1

1´ l´2
“

l

l ` 1
.

Problem 4. Let n ě 2. Show that the number of squarefree monic polyno-
mials fpXq P FqrXs of degree n is qn´qn´1. (Hint: Every monic polynomial
apXq can be written uniquely as apXq “ fpXqgpXq2, where fpXq is square-
free and both fpXq and gpXq are monic.)

Solution. Let an be the number of squarefree monic polynomials of de-
gree n. Every monic polynomial apXq can be written uniquely as apXq “
fpXqgpXq2, where fpXq is squarefree and both fpXq and gpXq are monic.
Write n “ degpaq, s “ degpfq and t “ degpgq, so that n “ s ` 2t. Since
the total number of monic polynomials of degree n is qn, we conclude that
qn “

ř

s,t: s`2t“n asq
t. We have a1 “ q and the claim an “ qn ´ qn´1 for

n ě 2 follows by induction.

Problem 5. Show that there are sets Sp Ď Fp (for prime p) such that

Pppx mod pq P Sp @p | x P Zq “ 0,
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but
ź

p

Ppx P Sp | x P Fpq ą 0.

Solution. Note that the proof of Problem 2 shows that we cannot pick Sp Ĺ
Fp for all primes p. The idea is now to imitate the nightmare scenario
presented in class, but use only a sparse subset of primes.

Fix an infinite set A of prime numbers. For any p P A, let Sp Ď Fp be the
set of residue classes of the form a mod p, where t12

?
pu ď a ď p ´ t12

?
pu.

For any p R A, let Sp “ Fp. For any integer x P Z and any prime p ą 16x2

in A, we have px mod pq R Sp. Therefore, there is no x P Z such that
px mod pq P Sp for all primes p. On the other hand,

ź

p

Ppx P Sp | x P Fpq “
ź

pPA

#Sp
#Fp

“
ź

pPA

p´ 2t12
?
pu

p
ě

ź

pPA

´

1´ p´1{2
¯

Since 1´p´1{2 converges to 1 as pÑ8, one can choose the set A sufficiently
sparse to make the product converge to a positive number (arbitrarily close
to 1).

Problem 6. Order pairs px, yq P N2 by maxpx, yq. What is

Ppgcdpx, yq “ 1 | px, yq P N2q?

Solution. Let M ě 2. Then,

Ppgcdpx, yq ı 0 mod p @p ďM | px, yq P N2q

“
ź

pďM

p1´ Ppx ” y ” 0 mod p | px, yq P N2qq

“
ź

pďM

p1´ p´2q,

which converges to ζp2q´1 “ 6{π2 as M Ñ8.

To show that the left-hand side converges to Ppgcdpx, yq “ 1 | px, yq P N2q,
we need to find an upper bound for the probability that x ” y ” 0 for some
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prime p ąM . But

Psuppx ” y ” 0 mod p for some p ąM | px, yq P N2q

! lim sup
TÑ8

Ppx ” y ” 0 mod p for some p ąM | px, yq P N, x, y ď T q

“ lim sup
TÑ8

Ppx ” y ” 0 mod p for some p ąM | px, yq P N2, x, y ď T q

ď lim sup
TÑ8

1

T 2

ÿ

pąM

Ppx ” y ” 0 mod p | px, yq P N2, x, y ď T q

ď lim sup
TÑ8

ÿ

pąM

1

p2

!
1

M
,

which indeed converges to zero as M Ñ8.

Problem 7 (If you know about Dirichlet series and how to make use of
their complex analysis). Use Dirichlet series to prove that

Ppx squarefree | x P Nq “
1

ζp2q
.

Solution. Consider the Dirichlet series

Dpsq “
ÿ

ně1 squarefree

n´s.

Because every natural number can be written uniquely as the product of
a squarefree natural number and a square, we have ζpsq “ Dpsqζp2sq, so
Dpsq “ ζpsq{ζp2sq. The right-most pole of ζpsq is a simple pole at s “ 1
with residue 1. The right-most zero of ζp2sq certainly has real part less than
1{2. The right-most pole of Dpsq is therefore a simple pole at s “ 1 with
residue 1{ζp2q. By (for example) the Wiener–Ikehara theorem, this implies
that for T Ñ8,

ÿ

1ďnďT squarefree

1 „
1

ζp2q
¨ T.

Problem 8. For any t P Fq, the discriminant of the polynomial ftpXq “
X3´ tX2`pt´ 3qX ` 1 is a square: discpftq “ p9´ 3t` t2q2. Assuming the
discriminant is nonzero (the polynomial ftpXq is squarefree), this implies
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that either ftpXq splits into linear factors, or its Galois group is the cyclic
group A3 Ă S3 of degree three. Show that

lim
qÑ8

PpftpXq splits into linear factors | t P Fqq “ Ppg “ id | g P A3q “
1

3
.

Solution. For any 0, 1 ‰ x P Fq, there is exactly one value rpxq P Fq such
that frpxqpxq “ 0. For x “ 0, 1, there is no such value rpxq. The image of the
map r : Fqzt0, 1u Ñ Fq is the set of t P Fq such that ftpXq has a root in Fq.
There are at most two values t P Fq for which discpfq “ p9´ 3t` t2q2 “ 0.
They have at most two preimages each. Any other t in the image has
exactly three preimages in Fqzt0, 1u (because each squarefree polynomial
ftpXq either splits completely or is irreducible). Therefore, the number of
t P Fq that split into linear factors is qn

3 `Op1q.

Problem 9. Here are two ways to estimate the number NpT q of pairs
px, yq P N2 such that x2y ď T :

aq NpT q “
ÿ

1ďxď
?
T

#t1 ď y ď
T

x2
u «

ÿ

1ďxď
?
T

T

x2
« T ¨

8
ÿ

x“1

1

x2
“ ζp2q ¨ T.

bq NpT q “
ÿ

1ďyďT

#t1 ď x ď

d

T

y
u «

ÿ

1ďyďT

d

T

y
«
?
T ¨

ÿ

1ďyďT

y´1{2 « 2 ¨ T.

Which is better for large T? Can you give an error bound for the better
one?

Solution. To make these estimates precise, use that tau “ a ` Op1q. We

also approximate sums
ř

aďxďb fpxq by integrals
şb
a fpxqdx for monotonic

functions f :

ÿ

aďxďb

fpxq “

ż b

a
fpxqdx`Opfpaqq `Opfpbqq.

In a), we obtain an error bound of OpT 1{2q, essentially because there are?
T summands and furthermore

ř

xą
?
T x

´2 “ OpT´1{2q.
In b), we obtain an error bound of OpT q, essentially because there are T
summands and furthermore

ř

1ďyďT y
´1{2 “ T 1{2 `Op1q.

Using the hyperbola method, one can do even better: To reduce the number
of summands, and therefore the number of places where we need to round
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(and incur a penalty of Op1q), note that x2y ď T implies that x ď 3
?
T or

t ď 3
?
T . We separately count the points with x ď 3

?
T and the points with

y ď 3
?
T , then subtract the points satisfying both x ď 3

?
T and y ď 3

?
T

(which had been double-counted):

NpT q “
ÿ

1ďxď 3?T

Z

T

x2

^

`
ÿ

1ďyď 3?T

[

d

T

y

_

´ t
3
?
T u ¨ t

3
?
T u

“
ÿ

1ďxď 3?T

1

x2
¨ T ` 2 ¨ T 2{3 ´ T 2{3 `OpT 1{3q

“ ζp2q ¨ T `OpT 1{3q.

In the last step, we used that

ÿ

1ďxďK

x´2 “ ζp2q ´
ÿ

xąK

x´2 “ ζp2q ´K´1 `OpK´2q

for large K.

Problem 10. Let a, b, c be a 2-cycle, an pn ´ 1q-cycle, and an n-cycle in
Sn (where n ě 2). Show that they together generate the entire symmetric
group Sn.

Solution. Let H Ď Sn be a subgroup containing a 2-cycle, an pn´ 1q-cycle,
and an n-cycle. Let i be the element of t1, . . . , nu fixed by the pn ´ 1q-
cycle. By conjugating the 2-cycle with an appropriate power of the n-cycle,
it follows that H contains a 2-cycle of the form pi jq. By conjugating with
powers of the pn´ 1q-cycle, we can show that H in fact contains all 2-cycles
of this form. By conjugating with powers of the n-cycle, it follows that H
contains every 2-cycle. Therefore, H “ Sn.
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