# Math 286X: Arithmetic Statistics 

## Spring 2020 <br> Solutions to problem set \#1

Problem 1. Fix a polynomial $f(X) \in \mathbb{Z}[X]$ of degree 1 or 2 . Show that

$$
\mathbb{P}(f(x) \text { squarefree } \mid x \in \mathbb{Z})=\prod_{p \text { prime }} \mathbb{P}\left(f(x) \not \equiv 0 \quad \bmod p^{2} \mid x \in \mathbb{Z}\right) .
$$

(Also think about what goes wrong in the proof for large degrees.)
Solution. If the polynomial $f(X)$ is not squarefree over $\mathbb{Q}$, both sides are clearly zero. Assume that $f(X)$ is squarefree, which implies that its discriminant is nonzero.
For any $M \geqslant 2$, we have
$\mathbb{P}\left(f(x) \not \equiv 0 \quad \bmod p^{2} \quad \forall p \leqslant M \mid x \in \mathbb{Z}\right)=\prod_{p \leqslant M} \mathbb{P}\left(f(x) \not \equiv 0 \quad \bmod p^{2} \mid x \in \mathbb{Z}\right)$
by the Chinese remainder theorem. The right-hand side is decreasing as $M \rightarrow \infty$, so it must converge. (In fact, it will converge to a positive number if $\mathbb{P}\left(f(x) \not \equiv 0 \bmod p^{2} \mid x \in \mathbb{Z}\right) \neq 0$ for all $p$.)
It remains to show that the left-hand side converges to $\mathbb{P}(f(x)$ squarefree $)$. If $f(x)$ is not squarefree, but $f(x) \not \equiv 0 \bmod p^{2}$ for $p \leqslant M$, then $f(x) \equiv 0$ $\bmod p^{2}$ for some $p>M$. It therefore suffices to show that the probability $\left(\mathbb{P}_{\text {sup }}\right)$ that $f(x) \equiv 0 \bmod p^{2}$ for some $p>M$ converges to zero as $M \rightarrow \infty$.
Note that the fact that $f(X)$ has degree 1 or 2 implies that $f(x)<_{f} T^{2}$ when $|x| \leqslant T$ (for large $T$ ). (The bound might depend on the coefficients of $f$, especially the leading coefficient.) Any prime $p$ with $f(x) \equiv 0 \bmod p^{2}$ must therefore satisfy $p<_{f} T$. Furthermore, if $p$ doesn't divide the leading coefficient of $f$, then $f(x)$ can have at most 2 roots modulo $p$. If $p$ moreover doesn't divide the discriminant of $f$, then Hensel's lemma shows that these
roots lift to unique roots modulo $p^{2}$. We therefore have

$$
\begin{aligned}
& \mathbb{P}_{\text {sup }}\left(f(x) \equiv 0 \quad \bmod p^{2} \text { for some } p>M \mid x \in \mathbb{Z}\right) \\
& =\limsup _{T \rightarrow \infty} \mathbb{P}\left(f(x) \equiv 0 \quad \bmod p^{2} \text { for some } p>M|x \in \mathbb{Z},|x| \leqslant T)\right. \\
& =\limsup _{T \rightarrow \infty} \mathbb{P}\left(f(x) \equiv 0 \quad \bmod p^{2} \text { for some } T>_{n} p>M|x \in \mathbb{Z},|x| \leqslant T)\right. \\
& \ll \limsup _{T \rightarrow \infty} \sum_{M<p \ll n_{n} T} \mathbb{P}\left(f(x) \equiv 0 \quad \bmod p^{2}|x \in \mathbb{Z},|x| \leqslant T)\right. \\
& \leqslant \limsup _{T \rightarrow \infty} \frac{1}{T} \sum_{M<p \ll{ }_{n} T} \#\left\{x \in \mathbb{Z} / p^{2} \mathbb{Z} \mid f(x) \equiv 0 \quad \bmod p^{2}\right\} \cdot\left(\frac{2 T}{p^{2}}+\mathcal{O}(1)\right) \\
& \ll \limsup _{T \rightarrow \infty} \frac{1}{T} \sum_{M<p \ll n_{n} T}\left(\frac{T}{p^{2}}+1\right) \\
& \ll \frac{1}{M},
\end{aligned}
$$

which indeed converges to zero as $M \rightarrow \infty$. The last inequality used the fact that the number of primes $p<_{n} T$ is $o(T)$.
If the degree of $f(X)$ was 3 , we would need to consider $p<_{n} T^{3 / 2}$. The number of such primes is far larger than $T$, so the above approach would fail. (Our error bound would not converge to any number less than 1 as $T \rightarrow \infty$.)

Problem 2. For each prime number $p$, fix a residue class $c_{p} \in \mathbb{F}_{p}$. Show that

$$
\mathbb{P}\left(x \not \equiv c_{p} \quad \bmod p \quad \forall p \mid x \in \mathbb{Z}\right)=0
$$

Solution. For any $M \geqslant 2$, we have

$$
\begin{aligned}
& \mathbb{P}_{\text {sup }}\left(x \not \equiv c_{p} \quad \bmod p \quad \forall p \mid x \in \mathbb{Z}\right) \\
& \leqslant \mathbb{P}\left(x \not \equiv c_{p} \quad \bmod p \quad \forall p \leqslant M \mid x \in \mathbb{Z}\right) \\
& =\prod_{p \leqslant M} \mathbb{P}\left(x \not \equiv c_{p} \quad \bmod p \mid x \in \mathbb{Z}\right) \\
& =\prod_{p \leqslant M}\left(1-\frac{1}{p}\right) .
\end{aligned}
$$

This converges to zero as $M \rightarrow \infty$ : We can rewrite it as

$$
\begin{aligned}
\prod_{p \leqslant M}\left(1-\frac{1}{p}\right) & =\prod_{p \leqslant M} \frac{1}{1+p^{-1}+p^{-2}+\cdots} \\
& =\frac{1}{\sum_{n \geqslant 1 \text { only divisible by primes } p \leqslant M} n^{-1}},
\end{aligned}
$$

which converges to zero because $\sum_{n=1}^{\infty} n^{-1}=\infty$. (We're basically computing $\frac{1}{\zeta(1)}=0$.)
Problem 3. Fix an odd prime $l$. Order the quadratic number fields $K$ by $|\operatorname{disc}(K)|$. Show that

$$
\mathbb{P}(K \text { unramified at } l \mid K \text { quadratic number field })=\frac{l}{l+1} .
$$

Solution. If $t \neq 1$ is a squarefree integer, then $\mathbb{Q}(\sqrt{t})$ is unramified at $l$ if and only if $t \not \equiv 0 \bmod l$. The probability that $t$ is not divisible by $l$ is $1-l^{-1}$. The probability that $t$ is not divisible by $l^{2}$ is $1-l^{-2}$. Counting quadratic number fields that are unramified at $l$ just like we did in class (but replacing the factor $1-l^{-2}$ by $1-l^{-1}$ ) proves that
$\mathbb{P}(K$ unramified at $l \mid K$ quadratic number field $)=\frac{1-l^{-1}}{1-l^{-2}}=\frac{l}{l+1}$.
Problem 4. Let $n \geqslant 2$. Show that the number of squarefree monic polynomials $f(X) \in \mathbb{F}_{q}[X]$ of degree $n$ is $q^{n}-q^{n-1}$. (Hint: Every monic polynomial $a(X)$ can be written uniquely as $a(X)=f(X) g(X)^{2}$, where $f(X)$ is squarefree and both $f(X)$ and $g(X)$ are monic.)

Solution. Let $a_{n}$ be the number of squarefree monic polynomials of degree $n$. Every monic polynomial $a(X)$ can be written uniquely as $a(X)=$ $f(X) g(X)^{2}$, where $f(X)$ is squarefree and both $f(X)$ and $g(X)$ are monic. Write $n=\operatorname{deg}(a), s=\operatorname{deg}(f)$ and $t=\operatorname{deg}(g)$, so that $n=s+2 t$. Since the total number of monic polynomials of degree $n$ is $q^{n}$, we conclude that $q^{n}=\sum_{s, t: s+2 t=n} a_{s} q^{t}$. We have $a_{1}=q$ and the claim $a_{n}=q^{n}-q^{n-1}$ for $n \geqslant 2$ follows by induction.

Problem 5. Show that there are sets $S_{p} \subseteq \mathbb{F}_{p}$ (for prime $p$ ) such that

$$
\mathbb{P}\left((x \bmod p) \in S_{p} \quad \forall p \mid x \in \mathbb{Z}\right)=0,
$$

but

$$
\prod_{p} \mathbb{P}\left(x \in S_{p} \mid x \in \mathbb{F}_{p}\right)>0 .
$$

Solution. Note that the proof of Problem 2 shows that we cannot pick $S_{p} \subsetneq$ $\mathbb{F}_{p}$ for all primes $p$. The idea is now to imitate the nightmare scenario presented in class, but use only a sparse subset of primes.
Fix an infinite set $A$ of prime numbers. For any $p \in A$, let $S_{p} \subseteq \mathbb{F}_{p}$ be the set of residue classes of the form $a \bmod p$, where $\left\lfloor\frac{1}{2} \sqrt{p}\right\rfloor \leqslant a \leqslant p-\left\lfloor\frac{1}{2} \sqrt{p}\right\rfloor$. For any $p \notin A$, let $S_{p}=\mathbb{F}_{p}$. For any integer $x \in \mathbb{Z}$ and any prime $p>16 x^{2}$ in $A$, we have $(x \bmod p) \notin S_{p}$. Therefore, there is no $x \in \mathbb{Z}$ such that $(x \bmod p) \in S_{p}$ for all primes $p$. On the other hand,

$$
\prod_{p} \mathbb{P}\left(x \in S_{p} \mid x \in \mathbb{F}_{p}\right)=\prod_{p \in A} \frac{\# S_{p}}{\# \mathbb{F}_{p}}=\prod_{p \in A} \frac{p-2\left\lfloor\frac{1}{2} \sqrt{p}\right\rfloor}{p} \geqslant \prod_{p \in A}\left(1-p^{-1 / 2}\right)
$$

Since $1-p^{-1 / 2}$ converges to 1 as $p \rightarrow \infty$, one can choose the set $A$ sufficiently sparse to make the product converge to a positive number (arbitrarily close to 1).

Problem 6. Order pairs $(x, y) \in \mathbb{N}^{2}$ by $\max (x, y)$. What is

$$
\mathbb{P}\left(\operatorname{gcd}(x, y)=1 \mid(x, y) \in \mathbb{N}^{2}\right) ?
$$

Solution. Let $M \geqslant 2$. Then,

$$
\begin{aligned}
& \mathbb{P}\left(\operatorname{gcd}(x, y) \not \equiv 0 \quad \bmod p \quad \forall p \leqslant M \mid(x, y) \in \mathbb{N}^{2}\right) \\
& =\prod_{p \leqslant M}\left(1-\mathbb{P}\left(x \equiv y \equiv 0 \quad \bmod p \mid(x, y) \in \mathbb{N}^{2}\right)\right) \\
& =\prod_{p \leqslant M}\left(1-p^{-2}\right),
\end{aligned}
$$

which converges to $\zeta(2)^{-1}=6 / \pi^{2}$ as $M \rightarrow \infty$.
To show that the left-hand side converges to $\mathbb{P}\left(\operatorname{gcd}(x, y)=1 \mid(x, y) \in \mathbb{N}^{2}\right)$, we need to find an upper bound for the probability that $x \equiv y \equiv 0$ for some
prime $p>M$. But

$$
\begin{aligned}
& \mathbb{P}_{\text {sup }}\left(x \equiv y \equiv 0 \quad \bmod p \text { for some } p>M \mid(x, y) \in \mathbb{N}^{2}\right) \\
& \ll \limsup _{T \rightarrow \infty} \mathbb{P}(x \equiv y \equiv 0 \quad \bmod p \text { for some } p>M \mid(x, y) \in \mathbb{N}, x, y \leqslant T) \\
& =\limsup _{T \rightarrow \infty} \mathbb{P}\left(x \equiv y \equiv 0 \quad \bmod p \text { for some } p>M \mid(x, y) \in \mathbb{N}^{2}, x, y \leqslant T\right) \\
& \leqslant \limsup _{T \rightarrow \infty} \frac{1}{T^{2}} \sum_{p>M} \mathbb{P}\left(x \equiv y \equiv 0 \quad \bmod p \mid(x, y) \in \mathbb{N}^{2}, x, y \leqslant T\right) \\
& \leqslant \limsup _{T \rightarrow \infty} \sum_{p>M} \frac{1}{p^{2}} \\
& \ll \frac{1}{M},
\end{aligned}
$$

which indeed converges to zero as $M \rightarrow \infty$.
Problem 7 (If you know about Dirichlet series and how to make use of their complex analysis). Use Dirichlet series to prove that

$$
\mathbb{P}(x \text { squarefree } \mid x \in \mathbb{N})=\frac{1}{\zeta(2)}
$$

Solution. Consider the Dirichlet series

$$
D(s)=\sum_{n \geqslant 1 \text { squarefree }} n^{-s} .
$$

Because every natural number can be written uniquely as the product of a squarefree natural number and a square, we have $\zeta(s)=D(s) \zeta(2 s)$, so $D(s)=\zeta(s) / \zeta(2 s)$. The right-most pole of $\zeta(s)$ is a simple pole at $s=1$ with residue 1 . The right-most zero of $\zeta(2 s)$ certainly has real part less than $1 / 2$. The right-most pole of $D(s)$ is therefore a simple pole at $s=1$ with residue $1 / \zeta(2)$. By (for example) the Wiener-Ikehara theorem, this implies that for $T \rightarrow \infty$,

$$
\sum_{1 \leqslant n \leqslant T \text { squarefree }} 1 \sim \frac{1}{\zeta(2)} \cdot T .
$$

Problem 8. For any $t \in \mathbb{F}_{q}$, the discriminant of the polynomial $f_{t}(X)=$ $X^{3}-t X^{2}+(t-3) X+1$ is a square: $\operatorname{disc}\left(f_{t}\right)=\left(9-3 t+t^{2}\right)^{2}$. Assuming the discriminant is nonzero (the polynomial $f_{t}(X)$ is squarefree), this implies
that either $f_{t}(X)$ splits into linear factors, or its Galois group is the cyclic group $A_{3} \subset S_{3}$ of degree three. Show that

$$
\lim _{q \rightarrow \infty} \mathbb{P}\left(f_{t}(X) \text { splits into linear factors } \mid t \in \mathbb{F}_{q}\right)=\mathbb{P}\left(g=\mathrm{id} \mid g \in A_{3}\right)=\frac{1}{3}
$$

Solution. For any $0,1 \neq x \in \mathbb{F}_{q}$, there is exactly one value $r(x) \in \mathbb{F}_{q}$ such that $f_{r(x)}(x)=0$. For $x=0,1$, there is no such value $r(x)$. The image of the map $r: \mathbb{F}_{q} \backslash\{0,1\} \rightarrow \mathbb{F}_{q}$ is the set of $t \in \mathbb{F}_{q}$ such that $f_{t}(X)$ has a root in $\mathbb{F}_{q}$. There are at most two values $t \in \mathbb{F}_{q}$ for which $\operatorname{disc}(f)=\left(9-3 t+t^{2}\right)^{2}=0$. They have at most two preimages each. Any other $t$ in the image has exactly three preimages in $\mathbb{F}_{q} \backslash\{0,1\}$ (because each squarefree polynomial $f_{t}(X)$ either splits completely or is irreducible). Therefore, the number of $t \in \mathbb{F}_{q}$ that split into linear factors is $\frac{q^{n}}{3}+\mathcal{O}(1)$.

Problem 9. Here are two ways to estimate the number $N(T)$ of pairs $(x, y) \in \mathbb{N}^{2}$ such that $x^{2} y \leqslant T$ :
a) $N(T)=\sum_{1 \leqslant x \leqslant \sqrt{T}} \#\left\{1 \leqslant y \leqslant \frac{T}{x^{2}}\right\} \approx \sum_{1 \leqslant x \leqslant \sqrt{T}} \frac{T}{x^{2}} \approx T \cdot \sum_{x=1}^{\infty} \frac{1}{x^{2}}=\zeta(2) \cdot T$.
b) $N(T)=\sum_{1 \leqslant y \leqslant T} \#\left\{1 \leqslant x \leqslant \sqrt{\frac{T}{y}}\right\} \approx \sum_{1 \leqslant y \leqslant T} \sqrt{\frac{T}{y}} \approx \sqrt{T} \cdot \sum_{1 \leqslant y \leqslant T} y^{-1 / 2} \approx 2 \cdot T$.

Which is better for large $T$ ? Can you give an error bound for the better one?

Solution. To make these estimates precise, use that $\lfloor a\rfloor=a+\mathcal{O}(1)$. We also approximate sums $\sum_{a \leqslant x \leqslant b} f(x)$ by integrals $\int_{a}^{b} f(x) \mathrm{d} x$ for monotonic functions $f$ :

$$
\sum_{a \leqslant x \leqslant b} f(x)=\int_{a}^{b} f(x) \mathrm{d} x+\mathcal{O}(f(a))+\mathcal{O}(f(b)) .
$$

In a), we obtain an error bound of $\mathcal{O}\left(T^{1 / 2}\right)$, essentially because there are $\sqrt{T}$ summands and furthermore $\sum_{x>\sqrt{T}} x^{-2}=\mathcal{O}\left(T^{-1 / 2}\right)$.
In b), we obtain an error bound of $\mathcal{O}(T)$, essentially because there are $T$ summands and furthermore $\sum_{1 \leqslant y \leqslant T} y^{-1 / 2}=T^{1 / 2}+\mathcal{O}(1)$.
Using the hyperbola method, one can do even better: To reduce the number of summands, and therefore the number of places where we need to round
(and incur a penalty of $\mathcal{O}(1)$ ), note that $x^{2} y \leqslant T$ implies that $x \leqslant \sqrt[3]{T}$ or $t \leqslant \sqrt[3]{T}$. We separately count the points with $x \leqslant \sqrt[3]{T}$ and the points with $y \leqslant \sqrt[3]{T}$, then subtract the points satisfying both $x \leqslant \sqrt[3]{T}$ and $y \leqslant \sqrt[3]{T}$ (which had been double-counted):

$$
\begin{aligned}
N(T) & =\sum_{1 \leqslant x \leqslant \sqrt[3]{T}}\left\lfloor\frac{T}{x^{2}}\right\rfloor+\sum_{1 \leqslant y \leqslant \sqrt[3]{T}}\left\lfloor\sqrt{\frac{T}{y}}\right\rfloor-\lfloor\sqrt[3]{T}\rfloor \cdot\lfloor\sqrt[3]{T}\rfloor \\
& =\sum_{1 \leqslant x \leqslant \sqrt[3]{T}} \frac{1}{x^{2}} \cdot T+2 \cdot T^{2 / 3}-T^{2 / 3}+\mathcal{O}\left(T^{1 / 3}\right) \\
& =\zeta(2) \cdot T+\mathcal{O}\left(T^{1 / 3}\right) .
\end{aligned}
$$

In the last step, we used that

$$
\sum_{1 \leqslant x \leqslant K} x^{-2}=\zeta(2)-\sum_{x>K} x^{-2}=\zeta(2)-K^{-1}+\mathcal{O}\left(K^{-2}\right)
$$

for large $K$.
Problem 10. Let $a, b, c$ be a 2 -cycle, an ( $n-1$ )-cycle, and an $n$-cycle in $S_{n}$ (where $n \geqslant 2$ ). Show that they together generate the entire symmetric group $S_{n}$.

Solution. Let $H \subseteq S_{n}$ be a subgroup containing a 2-cycle, an $(n-1)$-cycle, and an $n$-cycle. Let $i$ be the element of $\{1, \ldots, n\}$ fixed by the $(n-1)$ cycle. By conjugating the 2 -cycle with an appropriate power of the $n$-cycle, it follows that $H$ contains a 2-cycle of the form ( $i j$ ). By conjugating with powers of the $(n-1)$-cycle, we can show that $H$ in fact contains all 2-cycles of this form. By conjugating with powers of the $n$-cycle, it follows that $H$ contains every 2 -cycle. Therefore, $H=S_{n}$.

