Math 286X: Arithmetic Statistics Spring 2020

Problem set #8

Problem 1. Let G be a finite abelian group and let K be a number field. Consider the invponent $d: G \to \mathbb{R}^{\geq 0} \cup \{\infty\}$ given by $d(g) = |G| \cdot (1 - \frac{1}{\operatorname{ord}(g)})$ corresponding to the discriminant invariant. Let p be the smallest prime factor of |G| and let the p-torsion subgroup G[p] of G have size p^k . Show that $a(d) = |G| \cdot (1 - \frac{1}{p})$ and $b(d, K) = \frac{p^k - 1}{[K(\zeta_p):K]}$.

Solution. Since the function $\mathbb{Z}^{\geq 1} \to \mathbb{R}^{\geq 0}$ given by $x \mapsto |G| \cdot (1 - \frac{1}{x})$ is strictly increasing, d(g) attains its minimum value exactly when $\operatorname{ord}(g)$ is minimal. The minimal order of the elements of any group G is the smallest prime factor p dividing |G|. This shows that $a(d) = |G| \cdot (1 - \frac{1}{p})$. We have $\operatorname{ord}(g) = p$ if and only if $g \in G[p] \setminus \{\mathrm{id}\}$. The action of $(\mathbb{Z}/|G|\mathbb{Z})^{\times}$ on G[p] factors through the free action of $(\mathbb{Z}/p\mathbb{Z})^{\times}$. The image of $U = \operatorname{Gal}(K(\zeta_{|G|})|K) \subseteq (\mathbb{Z}/|G|\mathbb{Z})^{\times}$ in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is $\operatorname{Gal}(K(\zeta_p)|K)$. Hence, each U-orbit in $G[p] \setminus \{\mathrm{id}\}$ has exactly $[K(\zeta_p) : K]$ elements, so the number of orbits is $b(d, K) = \frac{p^k - 1}{|K(\zeta_p):K|}$.

Problem 2 (Kummer theory for C_3 -extensions of \mathbb{Q}). Let C_3 be the cyclic group of order 3. Consider the algebraic group \mathcal{G} defined over \mathbb{Q} given by $\mathcal{G}(K) = (\mathbb{Q}(\zeta_3) \otimes_{\mathbb{Q}} K)^{\times} = (K[Z]/(Z^2 + Z + 1))^{\times}$ for any number field K. (As a variety, \mathcal{G} is the subvariety of \mathbb{A}^2 of pairs (a, b), corresponding to a + bZ, such that $[N(a + bZ) = (a + bZ)(a + bZ^2) =]a^2 - ab + b^2 \neq 0$. This is also called the *Weil restriction* of the multiplicative group \mathbb{G}_m from $\mathbb{Q}(\zeta_3)$ to \mathbb{Q} .) Denote the automorphism of $\mathbb{Q}(\zeta_3)$ sending ζ_3 to ζ_3^2 by σ_2 . We also denote by σ_2 the resulting automorphism of $\mathcal{G}(K)$.

a) Show that the kernel of the map $\mathcal{G}(\overline{\mathbb{Q}}) \to \mathcal{G}(\overline{\mathbb{Q}})$ sending x to x^3 is isomorphic to $C_3 \times C_3$.

Solution. First, note that there is an isomorphism $\mathbb{Q}(\zeta_3) \otimes_{\mathbb{Q}} \overline{\mathbb{Q}} \cong \overline{\mathbb{Q}}[Z]/(Z^2 + Z + 1) \cong \overline{\mathbb{Q}}[Z]/(Z - \zeta_3)(Z - \zeta_3^2) \cong \overline{\mathbb{Q}} \times \overline{\mathbb{Q}}$ of $\overline{\mathbb{Q}}$ -algebras given by $a \otimes b \mapsto (ab, \sigma_2(a)b)$.

This implies that $\mathcal{G}(\overline{\mathbb{Q}})$ is as a group isomorphic to $\overline{\mathbb{Q}}^{\times} \times \overline{\mathbb{Q}}^{\times}$.

Of course, the map $\overline{\mathbb{Q}}^{\times} \to \overline{\mathbb{Q}}^{\times}$ sending x to x^3 has kernel $\langle \zeta_3 \rangle \cong C_3$, so the map $\overline{\mathbb{Q}}^{\times} \times \overline{\mathbb{Q}}^{\times} \to \overline{\mathbb{Q}}^{\times} \times \overline{\mathbb{Q}}^{\times}$ sending x to x^3 has kernel $C_3 \times C_3$. (The kernel is not contained in $\mathcal{G}(\mathbb{Q})$!)

b) Show that the map $\varphi : \mathcal{G}(\overline{\mathbb{Q}}) \to \mathcal{G}(\overline{\mathbb{Q}})$ sending x to $x^2/\sigma_2(x)$ is surjective and has kernel contained in $\mathcal{G}(\mathbb{Q})$ and isomorphic to C_3 .

Solution. Recall the isomorphism $\mathbb{Q}(\zeta_3) \otimes_{\mathbb{Q}} \overline{\mathbb{Q}} \cong \overline{\mathbb{Q}} \times \overline{\mathbb{Q}}$, $a \otimes b \mapsto (ab, \sigma_2(a)b)$ constructed in a). Note that the automorphism σ_2 of the left-hand side corresponds to the automorphism of the right hand side swapping the two factors $\overline{\mathbb{Q}}$. Consider an element x of $\mathcal{G}(\overline{\mathbb{Q}})$, corresponding to a pair $(x_1, x_2) \in \overline{\mathbb{Q}}^{\times} \times \overline{\mathbb{Q}}^{\times}$. Now, $x^2/\sigma_2(x) = 1$ is equivalent to $x_1^2/x_2 = x_2^2/x_1 = 1$. There are exactly three such pairs: $(1, 1), (\zeta_3, \zeta_3^2), (\zeta_3^2, \zeta_3)$, which correspond to $1 \otimes 1, \zeta_3 \otimes 1, \zeta_3^2 \otimes 1$ in $\mathcal{G}(\mathbb{Q})$. For surjectivity, consider any $(y_1, y_2) \in \overline{\mathbb{Q}}^{\times} \times \overline{\mathbb{Q}}^{\times}$. We have $\varphi(x_1, x_2) = (y_1, y_2)$ if and only if $x_1^2/x_2 = y_1$ and $x_2^2/x_1 = y_2$. For example, we can take any x_1 with $x_1^3 = y_1^2y_2$ and then let $x_2 = x_1^2/y_1$. \Box

c) Show that the $\Gamma_{\mathbb{Q}}$ -module $\mathcal{G}(\overline{\mathbb{Q}})$ is (co-)induced by the $\Gamma_{\mathbb{Q}(\zeta_3)}$ -module $\overline{\mathbb{Q}}^{\times}$.

Solution. Let $\tau \in \Gamma_{\mathbb{Q}}$ and $a \in \mathbb{Q}(\zeta_3)$, $b \in \overline{\mathbb{Q}}$. By definition of the variety \mathcal{G} , $\Gamma_{\mathbb{Q}}$ acts on the second factor: $\tau(a \otimes b) = a \otimes \tau(b)$. Let $\rho \in \Gamma_{\mathbb{Q}}$ be an arbitrary lift of $\sigma_2 \in \operatorname{Gal}(\mathbb{Q}(\zeta_3)|\mathbb{Q})$. It follows that the map $\mathbb{Q}(\zeta_3) \otimes_{\mathbb{Q}} \overline{\mathbb{Q}} \to \mathbb{Q}[\Gamma_{\mathbb{Q}}] \otimes_{\mathbb{Q}[\Gamma_{\mathbb{Q}(\zeta_3)}]} \overline{\mathbb{Q}} = \operatorname{Ind}_{\Gamma_{\mathbb{Q}(\zeta_3)}}^{\overline{\mathbb{Q}}} \overline{\mathbb{Q}}$ given by $a \otimes b \mapsto e \otimes ab + \rho \otimes a\rho^{-1}(b)$ is a Γ_K -equivariant isomorphism of \mathbb{Q} -algebras.

d) Show that $H^1(\overline{\mathbb{Q}}|\mathbb{Q}, \mathcal{G}(\overline{\mathbb{Q}})) = 1$. (Hint: Shapiro's lemma.)

Solution. By Shapiro's lemma and Hilbert 90,

$$H^{1}(\overline{\mathbb{Q}}|\mathbb{Q},\mathcal{G}(\overline{\mathbb{Q}})) = H^{1}(\overline{\mathbb{Q}}|\mathbb{Q}(\zeta_{3}),\overline{\mathbb{Q}}^{\times}) = 1.$$

e) Show that there is a bijection between the set of C_3 -extensions of \mathbb{Q} and the quotient group $\varphi(\mathbb{Q}(\zeta_3)^{\times}) \setminus \mathbb{Q}(\zeta_3)^{\times}$. Solution. Just like Kummer theory, this now follows from b), d), the cohomology long exact sequence induced by the short exact sequence

$$0 \to C_3 \to \mathcal{G}(\overline{\mathbb{Q}}) \xrightarrow{\varphi} \mathcal{G}(\overline{\mathbb{Q}}) \to 0,$$

and the fact that C_3 -extensions of \mathbb{Q} are in bijection with continuous homomorphisms $\Gamma_{\mathbb{Q}} \to C_3$.

Definition. If A and B are two finite groups with an action of B on A, we denote by $A \rtimes B$ their semidirect product: The group of pairs (a, b) with $a \in A$ and $b \in B$ with multiplication given by (a, b)(a', b') = (a(ba'), bb').

Let G and H be finite groups and let I be a finite set with a left action of G. This induces a (permutation) action of G on $\prod_{i \in I} H$ given by $g(h_i)_{i \in I} = (h_{g^{-1}i})_{i \in I}$. The wreath product $H \wr_I G$ is the resulting semidirect product $(\prod_{i \in I} H) \rtimes G$ of order $|H|^{|I|} \cdot |G|$. Note that $H \wr_I G$ acts on $H \times G$ by $((h_i)_{i \in I}, g) \cdot (h', g') = (h_{gg'}h', gg')$. The stabilizer of (id, id) $\in H \times G$ is the subgroup $\{(h_i)_{i \in I}, g) \mid h_{id} = id, g = id\} \cong \prod_{g \neq id} H$. A subgroup U of $H \wr_I G$ is called *transitive* if the resulting action of U on $H \times G$ is transitive. (I erroneously wrote down a weaker condition in class.)

Problem 3. Let L|K be a finite Galois extension with Galois group G and let M|L be a finite Galois extension with Galois group H. Let N be the Galois closure of M|K. Consider the wreath product $H \wr G = H \wr_G G$. Lift (extend) every element g of $G = \operatorname{Gal}(L|K)$ to an element τ_g of $\operatorname{Gal}(N|K)$. Construct a map $\varphi : \operatorname{Gal}(N|K) \to H \wr G$ by letting

$$\varphi(\sigma) = ((\tau_{g'^{-1}} \sigma \tau_{g'^{-1}g}^{-1} |_M)_{g' \in G}, g)$$

where $g = \sigma|_L$.

a) Show that φ is a well-defined group homomorphism.

Solution. By definition, $\tau_{g'^{-1}}\sigma\tau_{g'^{-1}g}^{-1}|_L = g'^{-1}g(g'^{-1}g)^{-1} = \mathrm{id}_L$, so $\tau_{g'^{-1}}\sigma\tau_{g'^{-1}g}^{-1}|_M$ is an element of $H = \mathrm{Gal}(M|L)$. Hence, φ is a well-defined map. To show that φ is a homomorphism, let $\sigma_1, \sigma_2 \in \mathrm{Gal}(N|K)$

and let
$$g_1 = \sigma_1|_L$$
 and $g_2 = \sigma_2|_L$, so $g_1g_2 = \sigma_1\sigma_2|_L$. Then,
 $\varphi(\sigma_1)\varphi(\sigma_2) = ((\tau_{g'^{-1}}\sigma_1\tau_{g'^{-1}g_1}^{-1}|_M)_{g'\in G}, g_1)((\tau_{g'^{-1}}\sigma_2\tau_{g'^{-1}g_2}^{-1}|_M)_{g'\in G}, g_2)$

$$= ((\tau_{g'^{-1}}\sigma_1\tau_{g'^{-1}g_1}^{-1}|_M)_{g'\in G}(\tau_{(g_1^{-1}g')^{-1}}\sigma_2\tau_{(g_1^{-1}g')^{-1}g_2}^{-1}|_M)_{g'\in G}, g_1g_2)$$

$$= ((\tau_{g'^{-1}}\sigma_1\tau_{g'^{-1}g_1}^{-1}\tau_{g'^{-1}g_1}\sigma_2\tau_{g'^{-1}g_1g_2}^{-1}|_M)_{g'\in G}, g_1g_2)$$

$$= ((\tau_{g'^{-1}}\sigma_1\sigma_2\tau_{g'^{-1}g_1g_2}^{-1}|_M)_{g'\in G}, g_1g_2)$$

$$= ((\tau_{g'^{-1}}\sigma_1\sigma_2\tau_{g'^{-1}g_1g_2}^{-1}|_M)_{g'\in G}, g_1g_2)$$

$$= ((\tau_{g'^{-1}}\sigma_1\sigma_2\tau_{g'^{-1}g_1g_2}^{-1}|_M)_{g'\in G}, g_1g_2)$$

$$= \varphi(\sigma_1\sigma_2).$$

b) Show that L is the fixed field of $\varphi^{-1}(\prod_{q\in G} H) \subset \operatorname{Gal}(N|K)$.

Solution. Of course, $\varphi(\sigma) \in \prod_{g \in G} H$ if and only if $g = \sigma|_L = \mathrm{id}_L$, which is equivalent to $\sigma \in \mathrm{Gal}(N|L)$.

c) Show that M is the fixed field of $\varphi^{-1}(T)$, where $T \cong \prod_{g \neq id} H$ is the stabilizer of $(id, id) \in H \times G$ for the action of $H \wr G$ on $H \times G$ defined above.

Solution. We have $\varphi(\sigma) \in T$ if and only if $g = \sigma|_L = \mathrm{id}_L$ and furthermore $\tau_{\mathrm{id}_L} \sigma \tau_g^{-1}|_M = \mathrm{id}_M$, so $\tau_{\mathrm{id}_L} \sigma \tau_{\mathrm{id}_L}^{-1}|_M = \mathrm{id}_M$. Since $\tau_{\mathrm{id}_L}|_L = \mathrm{id}_L$, the map $\tau_{\mathrm{id}_L}|_M$ is an automorphism of M. It follows that $\varphi(\sigma) \in T$ if and only if $\sigma|_M = \mathrm{id}_M$, which is equivalent to $\sigma \in \mathrm{Gal}(N|M)$. \Box

d) Show that φ is injective.

Solution. By c), the field M is certainly fixed by the kernel of φ , which is a normal subgroup of $\operatorname{Gal}(N|K)$. Let N' be the subfield of N fixed by the kernel. It is a Galois extension of K containing M. As N is the Galois closure of M|K, we must have N' = N, so the kernel of φ is trivial.

e) Show that the image of φ is a transitive subgroup of $H \wr G$.

Solution. Let R be the image of φ . By c) and d), we have $R \cong \operatorname{Gal}(N|K)$ and $R \cap T \cong \varphi^{-1}(T) \cong \operatorname{Gal}(N|M)$, so $[R : R \cap T] = [\operatorname{Gal}(N|K) : \operatorname{Gal}(N|M)] = [M : K] = |H| \cdot |G|$. The stabilizer of $(\operatorname{id}, \operatorname{id}) \in H \times G$ under the action of $R \subseteq H \wr G$ is $R \cap T$. Therefore, the orbit has size $[R : R \cap T] = |H| \cdot |G|$, so the action is indeed transitive.

f) Show that another homomorphism $\varphi' : \operatorname{Gal}(N|K) \to H \wr G$ is the homomorphism resulting from a different choice of $(\tau'_g)_{g \in G}$ as above if and only if there is an element a of $\prod_{g \in G} H$ such that $\varphi'(\sigma) = a\varphi(\sigma)a^{-1}$ for all $\sigma \in \operatorname{Gal}(N|K)$. (" φ is unique up to conjugation by elements of $\prod_{g \in G} H \subset H \wr G$.")

Solution. Since $\tau'_g = \tau_g$, we can write $\tau'_g = s_g \tau_g$ for some $s_g \in \text{Gal}(N|L)$. Let $a_g = s_{g^{-1}}|_M$ and $a = (a_g)_{g \in G} \in \prod_{g \in G} H$. It then follows that $\varphi'(\sigma) = a\varphi(\sigma)a^{-1}$ for all $\sigma \in \text{Gal}(N|K)$.

Conversely, for any $a = (a_g)_{g \in G} \in \prod_{g \in G} H$, we can choose a lift $s_g \in Gal(N|L)$ of $a_{g^{-1}}$ and then let $\tau_{g'} = s_g \tau_g$.

Problem 4. Let p be an odd prime. Write $C_2 = \{id, \sigma\}$ and $C_p = \langle \tau \rangle$ and write elements of $\prod_{g \in C_2} C_p$ as pairs (a_{id}, a_{σ}) . Show that the following are the only transitive subgroups of $C_p \wr C_2$ up to conjugation by elements of $\prod_{g \in C_2} C_p$:

- i) The entire group $C_p \wr C_2$.
- ii) The subgroup of elements of the form ((a, a), b) with $a \in C_p$ and $b \in C_2$, which is isomorphic to the cyclic group C_{2p} of order 2p.
- iii) The subgroup of elements of the form $((a, a^{-1}), b)$ with $a \in C_p$ and $b \in C_2$, which is isomorphic to the dihedral group D_p of order 2p.

Solution. It is easy to verify that the three subgroups given are indeed transitive subgroups. The group in ii) is the cyclic group generated by $((\tau, \tau), \sigma)$. In iii), $((\tau, \tau^{-1}), id)$ corresponds to a rotation and $((id, id), \sigma)$ corresponds to a reflection in D_p .

Let G be a transitive subgroup of $C_p \wr C_2$. We interpret the subgroup $N = \prod_{h \in C_2} C_p$ as the two-dimensional \mathbb{F}_p -vector space \mathbb{F}_p^2 . The element σ of C_2 acts on N as the reflection $r : \mathbb{F}_p^2 \to \mathbb{F}_p^2$, $(x, y) \mapsto (y, x)$. The intersection $V = G \cap N$ must be a vector subspace. The set W of vectors $w \in \mathbb{F}_2^2$ such that $(w, \sigma) \in G$ is a translate of V: It is nonempty by transitivity. If $v \in V$ and $w \in W$, then $(v + w, \sigma) = (v, \operatorname{id})(w, \sigma) \in G$, so $vw \in W$. If $w_1, w_2 \in W$, then $(w_1 - w_2, \operatorname{id}) = (w_1, \sigma)(w_2, \sigma)^{-1} \in G$.

If $V = \mathbb{F}_p^2$, then $G = C_p \wr C_2$. If V = 1, then G cannot be a transitive subgroup of G. Hence, let us assume that V is a line in \mathbb{F}_p^2 . The line V must be invariant under the reflection r: For any $v \in V$ and $w \in W$, we have $(r(v), \mathrm{id}) = (w, \sigma)(v, \mathrm{id})(w, \sigma)^{-1} \in G$, so $r(v) \in V$.

Hence, V must be either the line spanned by (1,1) or the line spanned by (1,-1).

Assume $V = \langle (1,1) \rangle$ and $W = \langle (1,1) \rangle + (a,b)$. Conjugating the subgroup G by $(\frac{a-b}{2},0) \in N$, we may assume a = b = 0, giving rise to the subgroup in ii).

On the other hand, if $V = \langle (1, -1) \rangle$ and $W = \langle (1, -1) \rangle + (a, b)$, it follows that $((a + b, a + b), id) = ((a, b), \sigma)((a, b), \sigma) \in G$, so $(a + b, a + b) \in \langle (1, -1) \rangle$, which implies that a = -b, so $(a, b) \in \langle (1, -1) \rangle$. Hence, $W = \langle (1, -1) \rangle$, giving rise to the subgroup in iii).

Problem 5 (Roughly [Klü06]). Fix a prime number $p \neq 2$.

- a) Let K be a quadratic field extension of \mathbb{Q} . Show that if L is an unramified Galois extension of K with Galois group C_p , then L is a Galois extension of \mathbb{Q} with Galois group D_p (as in Problem 4iii)).
- b) Assuming MCS, show that the number of Galois extensions L of \mathbb{Q} with Galois group D_p such that L|K is unramified, where K is the subfield fixed by the group C_p of rotations in D_p , and $|D_K| \leq T$ is $\sim C \cdot T$ for $T \to \infty$ and some constant $C \geq 0$.
- c) Order the quadratic number fields K by $|D_K|$. Conclude that (assuming MCS), the expected size of the *p*-torsion subgroup of the class group of a random quadratic number field K is C + 1. (Hint: Look at the Hilbert class field of K.)

Remark. The Cohen-Lenstra heuristics predict that $C = \frac{p+1}{2p}$. (This is currently only known for p = 3, using the fact that $D_3 = S_3$ and our nice parametrization of cubic extensions! The average size is 1 + 1 for imaginary quadratic number fields and $p^{-1} + 1$ for real quadratic number fields.) In fact, they predict with what probability the *p*-Sylow subgroup of Cl(K) is a given fixed *p*-group.

Problem 6 (Counterexample to Malle's conjecture, see [Klü05]). a) Let L be a Galois extension of $K = \mathbb{Q}(\zeta_3)$ with Galois group C_3 . Let M be the Galois closure of $L|\mathbb{Q}$. Show that one of the following is true:

i) The Galois group is $\operatorname{Gal}(M|\mathbb{Q}) \cong C_3 \wr C_2$ and we have

 $\operatorname{Nm}\operatorname{disc}(L|\mathbb{Q}(\zeta_3)) = |\operatorname{disc}(M^H)|,$

where $H \subset C_3 \wr C_2$ is the stabilizer of $(id, id) \in C_3 \times C_2$.

ii) The Galois group is $\operatorname{Gal}(M|\mathbb{Q}) \cong C_6$ and M = L and

Nm disc $(L|\mathbb{Q}(\zeta_3)) \simeq |\operatorname{disc}(M)|.$

iii) The Galois group is $\operatorname{Gal}(M|\mathbb{Q}) \cong S_3$ and M = L and

Nm disc
$$(L|\mathbb{Q}(\zeta_3)) \approx |\operatorname{disc}(M)|.$$

- b) Assuming MCS, show:
 - i) The number of Galois extensions M of \mathbb{Q} with $\operatorname{Gal}(M|\mathbb{Q}) \cong C_3 \wr C_2$ and $|\operatorname{disc}(M^H)| \leq T$ is $\asymp X^{1/2}$.
 - ii) The number of Galois extensions M of \mathbb{Q} with $\operatorname{Gal}(M|\mathbb{Q}) \cong C_6$ and $|\operatorname{disc}(M)| \leq T$ is $\asymp X^{1/3}$.
 - iii) The number of Galois extensions M of \mathbb{Q} with $\operatorname{Gal}(M|\mathbb{Q}) \cong S_3$ and $|\operatorname{disc}(M)| \leq T$ is $\approx X^{1/3}$.
- c) Assuming MCS, show that the number of Galois extensions L of $\mathbb{Q}(\zeta_3)$ with $\operatorname{Gal}(L|\mathbb{Q}(\zeta_3)) \cong C_3$ and $\operatorname{Nm}\operatorname{disc}(L|\mathbb{Q}(\zeta_3))$ is $\asymp X^{1/2}\log X$.
- d) Conclude that MCS is false in one of the four cases used above. (In fact, it turns out that i is wrong and ii, iii, c are correct.)

References

- [Klü05] Jürgen Klüners. "A counterexample to Malle's conjecture on the asymptotics of discriminants". In: C. R. Math. Acad. Sci. Paris 340.6 (2005), pp. 411-414. ISSN: 1631-073X. DOI: 10.1016/j. crma.2005.02.010. URL: https://doi.org/10.1016/j.crma. 2005.02.010.
- [Klü06] Jürgen Klüners. "Asymptotics of number fields and the Cohen-Lenstra heuristics". In: J. Théor. Nombres Bordeaux 18.3 (2006), pp. 607-615. ISSN: 1246-7405. URL: http://jtnb.cedram.org/ item?id=JTNB_2006_18_3_607_0.