Math 286X: Arithmetic Statistics

Spring 2020
Problem set #8

Problem 1. Let G be a finite abelian group and let K be a number field.
Consider the invponent d : G — R=? U {o0} given by d(g) = |G| (1 — Wl(g))
corresponding to the discriminant invariant. Let p be the smallest prime

factor of |G| and let the p-torsion subgroup G[p] of G have size p*. Show

k—1
that a(d) = |G| - (1 - }) and b(d, K) = gz

Solution. Since the function Z>! — R>? given by z — |G|~ (1—2) is strictly
increasing, d(g) attains its minimum value exactly when ord(g) is minimal.
The minimal order of the elements of any group G is the smallest prime
factor p dividing |G|. This shows that a(d) = |G|-(1—11;). We have ord(g) = p
if and only if g € G[p]\{id}. The action of (Z/|G|Z)* on G[p] factors through
the free action of (Z/pZ)*. The image of U = Gal(K ((|¢|)|K) < (Z/|G|Z)*
in (Z/pZ)* is Gal(K((p)|K). Hence, each U-orbit in G[p]\{id} has exactly

[K((p) : K] elements, so the number of orbits is b(d, K) = [Kiﬁ O

Problem 2 (Kummer theory for Cs-extensions of Q). Let C3 be the cyclic
group of order 3. Consider the algebraic group G defined over Q given by
G(K) = (Q(B)®gK)* = (K[Z]/(Z*+Z+1))* for any number field K. (As
a variety, G is the subvariety of A2 of pairs (a,b), corresponding to a + bZ,
such that [N(a + bZ) = (a + bZ)(a + bZ?) =]a® — ab + b*> # 0. This is also
called the Weil restriction of the multiplicative group G, from Q((3) to Q.)
Denote the automorphism of Q((3) sending (3 to (2 by o2. We also denote
by o9 the resulting automorphism of G(K).

a) Show that the kernel of the map G(Q) — G(Q) sending x to 3 is
isomorphic to C5 x Cj.

Solution. First, note that there is an isomorphism @(Cgl@@ Q x~
QZ)/(2* + Z +1) = QIZ)/(Z — 3)(Z — ¢3) = Q x Q of Q-algebras
given by a ® b — (ab, o2(a)b).

This implies that G(Q) is as a group isomorphic to Q" x Q™.



Of course, the map Q" ->Q" sending x to #3 has kernel ((3) = Cs,
so the map @X X @X — @X X @X sending = to 23 has kernel C3 x Cs.
(The kernel is not contained in G(Q)!) O

Show that the map ¢ : G(Q) — G(Q) sending = to x?/o3(z) is surjec-
tive and has kernel contained in G(Q) and isomorphic to Cs.

Solution. Recall the isomorphism Q((3) ® Q =~ Q x Q, a ® b
(ab,o2(a)b) constructed in a). Note that the automorphism oy of
the left-hand side corresponds to the automorphism of the right hand
side swapping the two factors Q. Consider an element = of G(Q),
corresponding to a pair (z1,z2) € Q" xQ". Now, 22 /os(z) = 1
is equivalent to x?/xo = x3/r; = 1. There are exactly three such
pairs: (1,1), (¢3,¢3), (¢3,(3), which correspond to 1®1,(3®1,(3 ® 1
in G(Q). For surjectivity, consider any (y1,¥y2) € Q" xQ". We have
o(z1,72) = (y1,y2) if and only if 23/zy = y1 and 23/71 = ya. For ex-
ample, we can take any x1 with 23 = y2y, and then let x5 = 23/y;. O

Show that the I'g-module G(Q) is (co-)induced by the I'g(,)-module

X

Q.

Solution. Let 7 € I'g and a € Q(¢3), b € Q. By definition of the
variety G, I'g acts on the second factor: 7(a ® b) = a ® 7(b). Let
p € I'g be an arbitrary lift of oy € Gal(Q((3)[Q). It follows that

the map Q((2) ®g Q — Qll'g] G, @ = Mdl, T given by

a®b— e®ab+ p® ap_l(b) is a I'k-equivariant isomorphism of
Q-algebras. O

Show that H'(Q|Q,G(Q)) = 1. (Hint: Shapiro’s lemma.)

Solution. By Shapiro’s lemma and Hilbert 90,
H'(QIQ.6(Q)) = H'(QQ(¢:),Q7) = 1. O

Show that there is a bijection between the set of Cs-extensions of Q
and the quotient group w(Q(Cs)*)\Q(Cs) "



Solution. Just like Kummer theory, this now follows from @ @, the
cohomology long exact sequence induced by the short exact sequence

0— 05— G(Q 5 G(@ —0,

and the fact that Cs-extensions of Q are in bijection with continuous
homomorphisms I'g — Cs. O

Definition. If A and B are two finite groups with an action of B on A, we
denote by A x B their semidirect product: The group of pairs (a,b) with
a € A and b € B with multiplication given by (a,b)(a’,b’) = (a(ba’), bb’).

Let G and H be finite groups and let I be a finite set with a left action of
G. This induces a (permutation) action of G on [ [,.; H given by g(h;)ier =
(hg-1;)ier. The wreath product H iy G is the resulting semidirect product
(I1,e; H) % G of order |H|!I-|G|. Note that H iy G acts on H x G by
((hi)ier,9)-(W',g") = (hggh', gg'). The stabilizer of (id,id) € H x G is the
subgroup {(h;)ier, g) | hia = id, g =id} =[] ;g H. A subgroup U of Hy G
is called transitive if the resulting action of U on H x G is transitive. (I
erroneously wrote down a weaker condition in class.)

Problem 3. Let L|K be a finite Galois extension with Galois group G and
let M|L be a finite Galois extension with Galois group H. Let N be the
Galois closure of M|K. Consider the wreath product H! G = H g G. Lift
(extend) every element g of G = Gal(L|K) to an element 7, of Gal(N|K).
Construct a map ¢ : Gal(N|K) — H ! G by letting

0(0) = ((ry1075 "1 Inr)gec 9)

where g = o|.
a) Show that ¢ is a well-defined group homomorphism.

Solution. By definition, 7'917107'9_,}19|L = ¢ lg(¢"tg)"' = idg, so

T, /71079_,,119]1\4 is an element of H = Gal(M|L). Hence, ¢ is a well-

g
defined map. To show that ¢ is a homomorphism, let o1, 09 € Gal(N|K)



and let g1 = ‘71|L and gg = 02’[,, SO g192 = 0’102|L. Then,

p(o1)p(o2) = ((14- 1017, 1, M) gec 91) (- 1027731 LM)gec, 92)

-1
g— 10'17'/ lg |M)geG( (9719 10'27'( ~1g1) |M)geG79192)
1Tl T 10T |M)gea, 9192)
9 g tg1' (91 9") (91 '9")"1g2 gEe

-1
Ty—101T 1 Ty1g,02T 01 0 geGs 91.92)

Ty~ 10'10'27'g/ 1g192|M)g€G79192)

b) Show that L is the fixed field of (pfl(l_[geG H) c Gal(N|K).

Solution. Of course, ¢(0) € [, H if and only if g = o[, = idy,
which is equivalent to o € Gal(N|L). O

c¢) Show that M is the fixed field of ¢ ~1(T), where T' =~ [ [ zia H is the
stabilizer of (id,id) € H x G for the action of H!G on H x G defined
above.

Solution. We have ¢(o) € T if and only if g = o|;, = id;, and further-
more TidLO'Tg_1|M = idyy, so TidLO‘TiEi’M = idys. Since 7q, |1 = idp,
the map 74, |as is an automorphism of M. It follows that ¢(o) € T if
and only if 0|y = idps, which is equivalent to o € Gal(N|M). O

d) Show that ¢ is injective.

Solution. By c), the field M is certainly fixed by the kernel of ¢, which
is a normal subgroup of Gal(N|K). Let N’ be the subfield of N fixed
by the kernel. It is a Galois extension of K containing M. As N is
the Galois closure of M|K, we must have N’ = N, so the kernel of ¢
is trivial. O

e) Show that the image of ¢ is a transitive subgroup of H ! G.

Solution. Let R be the image of ¢. By c) and d), we have R =~
Gal(N|K) and RnT =~ ¢ YT) = Gal(N|M), so [R: RnT] =
[Gal(N|K) : Gal(N|M)] = [M : K] = |H| - |G|. The stabilizer of
(id,id) € H x G under the action of R € H1G is R n T. Therefore,
the orbit has size [R : R nT] = |H| - |G|, so the action is indeed
transitive. O



f) Show that another homomorphism ¢’ : Gal(N|K) — H ! G is the
homomorphism resulting from a different choice of (7;)sec as above
if and only if there is an element a of [[ ., H such that ¢'(0) =
ap(o)a=! for all o € Gal(N|K). (“p is unique up to conjugation by
elements of [ [ .o H = H1G.”)

Solution. Since 7, = 7,4, we can write 7, = 5,7, for some s, € Gal(N|L).
Let ag = sg-1|m and a = (ag)gec € [[,eq H- It then follows that

¢'(0) = ap(c)a~! for all o € Gal(N|K).

Conversely, for any a = (ag)gec € | [,cq H, we can choose a lift s; €
Gal(N|L) of a;—1 and then let 7o = s,7,. O

Problem 4. Let p be an odd prime. Write Cy = {id, o} and C},, = (7) and
write elements of [ [ ., Cp as pairs (aiq, ag). Show that the following are
the only transitive subgroups of C}, ¢ C3 up to conjugation by elements of

HgECQ Cp:

i) The entire group C, Cs.

ii) The subgroup of elements of the form ((a, a),b) with a € C, and b € Cs,
which is isomorphic to the cyclic group Cs), of order 2p.

iii) The subgroup of elements of the form ((a,a™!),b) with a € C, and
b € Cy, which is isomorphic to the dihedral group D, of order 2p.

Solution. It is easy to verify that the three subgroups given are indeed tran-
sitive subgroups. The group in ii) is the cyclic group generated by ((7,7),0).
In iii), ((7,771),id) corresponds to a rotation and ((id,id), o) corresponds
to a reflection in D,,.

Let G be a transitive subgroup of €}, C>. We interpret the subgroup N =
HhECQ C) as the two-dimensional IF,-vector space IFIQ,. The element o of Cy
acts on N as the reflection r : F]% — IF%, (z,y) — (y,x). The intersection
V = G n N must be a vector subspace. The set W of vectors w € F% such
that (w,o) € G is a translate of V: It is nonempty by transitivity. If v e V
and w € W, then (v + w, o) = (v,id)(w,0) € G, so vw € W. If w1, ws € W,
then (w; — ws,id) = (wy,0)(we,0) "' € G,

IfVv = IF?,, then G = Cp,1Cy. If V = 1, then G cannot be a transitive

subgroup of GG. Hence, let us assume that V is a line in IFIQ,. The line V

must be invariant under the reflection r: For any v € V and w € W, we have
(r(v),id) = (w,0)(v,id)(w,0)"' € G, so r(v) € V.



Hence, V must be either the line spanned by (1,1) or the line spanned by
(1,-1).

Assume V = ((1,1)) and W = {(1,1)) + (a,b). Conjugating the subgroup
G by (“T_b, 0) € N, we may assume a = b = 0, giving rise to the subgroup in
ii).

On the other hand, if V = {((1,—1)) and W = {(1,—1)) + (a,b), it follows
that ((a+0b,a+0),id) = ((a,b),0)((a,b),0) € G,s0 (a+b,a+b) € {(1,-1)),
which implies that a = —b, so (a, ) e ((1,-1)). Hence, W = {(1,-1)),
giving rise to the subgroup in iii). O

Problem 5 (Roughly [Kl1i06]). Fix a prime number p # 2.

a) Let K be a quadratic field extension of Q. Show that if L is an
unramified Galois extension of K with Galois group C), then L is a
Galois extension of Q with Galois group D, (as in Problem [ii)]).

b) Assuming MCS, show that the number of Galois extensions L of Q
with Galois group D, such that L|K is unramified, where K is the
subfield fixed by the group C), of rotations in D,, and |Dg| < T is
~ C -T for T'— oo and some constant C' > 0.

¢) Order the quadratic number fields K by |Dgl|. Conclude that (as-
suming MCS), the expected size of the p-torsion subgroup of the class
group of a random quadratic number field K is C'+ 1. (Hint: Look at
the Hilbert class field of K.)

Remark. The Cohen—Lenstra heuristics predict that C' = pJ;l. (This is
currently only known for p = 3, using the fact that D3 = S5 and our nice
parametrization of cubic extensions! The average size is 1 + 1 for imaginary
quadratic number fields and p~! + 1 for real quadratic number fields.) In
fact, they predict with what probability the p-Sylow subgroup of Cl(K) is
a given fixed p-group.

Problem 6 (Counterexample to Malle’s conjecture, see [Klu05]). a) Let
L be a Galois extension of K = Q((3) with Galois group C5. Let M
be the Galois closure of L|Q. Show that one of the following is true:

i) The Galois group is Gal(M|Q) = C31 Cy and we have
Nm disc(L|Q(¢3)) = | dise(MH)],

where H < C31 (Y is the stabilizer of (id,id) € C5 x Cs.



ii) The Galois group is Gal(M|Q) =~ Cs and M = L and
Nm disc(L|Q(¢3)) = | disc(M)|.
iii) The Galois group is Gal(M|Q) =~ S3 and M = L and
Nm disc(L|Q(¢3)) = | disc(M)].
b) Assuming MCS, show:

i) The number of Galois extensions M of Q with Gal(M|Q) =~ C3:Cs
and | disc(M™)| < T is = X1/2.

ii) The number of Galois extensions M of Q with Gal(M|Q) = Cs
and |disc(M)| < T is = X /3.
iii) The number of Galois extensions M of Q with Gal(M|Q) =~ S3

and |disc(M)| < T is = X /3.

c¢) Assuming MCS, show that the number of Galois extensions L of Q((3)
with Gal(L|Q(¢3)) = C3 and Nm disc(L|Q(¢3)) is = X'/?log X.

d) Conclude that MCS is false in one of the four cases used above. (In
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