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Problem set #8

Problem 1. Let G be a finite abelian group and let K be a number field.
Consider the invponent d : GÑ Rě0Yt8u given by dpgq “ |G| ¨ p1´ 1

ordpgqq

corresponding to the discriminant invariant. Let p be the smallest prime
factor of |G| and let the p-torsion subgroup Grps of G have size pk. Show

that apdq “ |G| ¨ p1´ 1
pq and bpd,Kq “ pk´1

rKpζpq:Ks
.

Solution. Since the function Zě1 Ñ Rě0 given by x ÞÑ |G| ¨ p1´ 1
xq is strictly

increasing, dpgq attains its minimum value exactly when ordpgq is minimal.
The minimal order of the elements of any group G is the smallest prime
factor p dividing |G|. This shows that apdq “ |G|¨p1´ 1

pq. We have ordpgq “ p

if and only if g P Grpsztidu. The action of pZ{|G|Zqˆ on Grps factors through
the free action of pZ{pZqˆ. The image of U “ GalpKpζ|G|q|Kq Ď pZ{|G|Zqˆ
in pZ{pZqˆ is GalpKpζpq|Kq. Hence, each U -orbit in Grpsztidu has exactly

rKpζpq : Ks elements, so the number of orbits is bpd,Kq “ pk´1
rKpζpq:Ks

.

Problem 2 (Kummer theory for C3-extensions of Q). Let C3 be the cyclic
group of order 3. Consider the algebraic group G defined over Q given by
GpKq “ pQpζ3qbQKq

ˆ “ pKrZs{pZ2`Z`1qqˆ for any number field K. (As
a variety, G is the subvariety of A2 of pairs pa, bq, corresponding to a` bZ,
such that rNpa` bZq “ pa` bZqpa` bZ2q “sa2 ´ ab` b2 ‰ 0. This is also
called the Weil restriction of the multiplicative group Gm from Qpζ3q to Q.)
Denote the automorphism of Qpζ3q sending ζ3 to ζ2

3 by σ2. We also denote
by σ2 the resulting automorphism of GpKq.

a) Show that the kernel of the map GpQq Ñ GpQq sending x to x3 is
isomorphic to C3 ˆ C3.

Solution. First, note that there is an isomorphism Qpζ3q bQ Q –

QrZs{pZ2 ` Z ` 1q – QrZs{pZ ´ ζ3qpZ ´ ζ2
3 q – Q ˆ Q of Q-algebras

given by ab b ÞÑ pab, σ2paqbq.

This implies that GpQq is as a group isomorphic to Qˆ ˆQˆ.
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Of course, the map Qˆ Ñ Qˆ sending x to x3 has kernel xζ3y – C3,

so the map QˆˆQˆ Ñ QˆˆQˆ sending x to x3 has kernel C3ˆC3.
(The kernel is not contained in GpQq!)

b) Show that the map ϕ : GpQq Ñ GpQq sending x to x2{σ2pxq is surjec-
tive and has kernel contained in GpQq and isomorphic to C3.

Solution. Recall the isomorphism Qpζ3q bQ Q – Q ˆ Q, a b b ÞÑ
pab, σ2paqbq constructed in a). Note that the automorphism σ2 of
the left-hand side corresponds to the automorphism of the right hand
side swapping the two factors Q. Consider an element x of GpQq,
corresponding to a pair px1, x2q P Qˆ ˆ Qˆ. Now, x2{σ2pxq “ 1
is equivalent to x2

1{x2 “ x2
2{x1 “ 1. There are exactly three such

pairs: p1, 1q, pζ3, ζ
2
3 q, pζ

2
3 , ζ3q, which correspond to 1 b 1, ζ3 b 1, ζ2

3 b 1

in GpQq. For surjectivity, consider any py1, y2q P Qˆ ˆ Qˆ. We have
ϕpx1, x2q “ py1, y2q if and only if x2

1{x2 “ y1 and x2
2{x1 “ y2. For ex-

ample, we can take any x1 with x3
1 “ y2

1y2 and then let x2 “ x2
1{y1.

c) Show that the ΓQ-module GpQq is (co-)induced by the ΓQpζ3q-module

Qˆ.

Solution. Let τ P ΓQ and a P Qpζ3q, b P Q. By definition of the
variety G, ΓQ acts on the second factor: τpa b bq “ a b τpbq. Let
ρ P ΓQ be an arbitrary lift of σ2 P GalpQpζ3q|Qq. It follows that

the map Qpζ3q bQ Q Ñ QrΓQs bQrΓQpζ3qs
Q “ IndQ

ΓQpζ3q
Q given by

a b b ÞÑ e b ab ` ρ b aρ´1pbq is a ΓK-equivariant isomorphism of
Q-algebras.

d) Show that H1pQ|Q,GpQqq “ 1. (Hint: Shapiro’s lemma.)

Solution. By Shapiro’s lemma and Hilbert 90,

H1pQ|Q,GpQqq “ H1pQ|Qpζ3q,Q
ˆ
q “ 1.

e) Show that there is a bijection between the set of C3-extensions of Q
and the quotient group ϕpQpζ3q

ˆqzQpζ3q
ˆ.
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Solution. Just like Kummer theory, this now follows from b), d), the
cohomology long exact sequence induced by the short exact sequence

0 Ñ C3 Ñ GpQq ϕ
Ñ GpQq Ñ 0,

and the fact that C3-extensions of Q are in bijection with continuous
homomorphisms ΓQ Ñ C3.

Definition. If A and B are two finite groups with an action of B on A, we
denote by A ¸ B their semidirect product: The group of pairs pa, bq with
a P A and b P B with multiplication given by pa, bqpa1, b1q “ papba1q, bb1q.

Let G and H be finite groups and let I be a finite set with a left action of
G. This induces a (permutation) action of G on

ś

iPI H given by gphiqiPI “
phg´1iqiPI . The wreath product H oI G is the resulting semidirect product

p
ś

iPI Hq ¸ G of order |H||I| ¨ |G|. Note that H oI G acts on H ˆ G by
pphiqiPI , gq.ph

1, g1q “ phgg1h
1, gg1q. The stabilizer of pid, idq P H ˆ G is the

subgroup tphiqiPI , gq | hid “ id, g “ idu –
ś

g‰idH. A subgroup U of H oIG
is called transitive if the resulting action of U on H ˆ G is transitive. (I
erroneously wrote down a weaker condition in class.)

Problem 3. Let L|K be a finite Galois extension with Galois group G and
let M |L be a finite Galois extension with Galois group H. Let N be the
Galois closure of M |K. Consider the wreath product H oG “ H oG G. Lift
(extend) every element g of G “ GalpL|Kq to an element τg of GalpN |Kq.
Construct a map ϕ : GalpN |Kq Ñ H oG by letting

ϕpσq “ ppτg1´1στ´1
g1´1g

|M qg1PG, gq

where g “ σ|L.

a) Show that ϕ is a well-defined group homomorphism.

Solution. By definition, τg1´1στ´1
g1´1g

|L “ g1´1gpg1´1gq´1 “ idL, so

τg1´1στ´1
g1´1g

|M is an element of H “ GalpM |Lq. Hence, ϕ is a well-

defined map. To show that ϕ is a homomorphism, let σ1, σ2 P GalpN |Kq
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and let g1 “ σ1|L and g2 “ σ2|L, so g1g2 “ σ1σ2|L. Then,

ϕpσ1qϕpσ2q “ ppτg1´1σ1τ
´1
g1´1g1

|M qg1PG, g1qppτg1´1σ2τ
´1
g1´1g2

|M qg1PG, g2q

“ ppτg1´1σ1τ
´1
g1´1g1

|M qg1PGpτpg´1
1 g1q´1σ2τ

´1

pg´1
1 g1q´1g2

|M qg1PG, g1g2q

“ ppτg1´1σ1τ
´1
g1´1g1

τ
pg´1

1 g1q´1σ2τ
´1

pg´1
1 g1q´1g2

|M qg1PG, g1g2q

“ ppτg1´1σ1τ
´1
g1´1g1

τg1´1g1σ2τ
´1
g1´1g1g2

|M qg1PG, g1g2q

“ ppτg1´1σ1σ2τ
´1
g1´1g1g2

|M qg1PG, g1g2q

“ ϕpσ1σ2q.

b) Show that L is the fixed field of ϕ´1p
ś

gPGHq Ă GalpN |Kq.

Solution. Of course, ϕpσq P
ś

gPGH if and only if g “ σ|L “ idL,
which is equivalent to σ P GalpN |Lq.

c) Show that M is the fixed field of ϕ´1pT q, where T –
ś

g‰idH is the
stabilizer of pid, idq P H ˆG for the action of H oG on H ˆG defined
above.

Solution. We have ϕpσq P T if and only if g “ σ|L “ idL and further-
more τidLστ

´1
g |M “ idM , so τidLστ

´1
idL
|M “ idM . Since τidL |L “ idL,

the map τidL |M is an automorphism of M . It follows that ϕpσq P T if
and only if σ|M “ idM , which is equivalent to σ P GalpN |Mq.

d) Show that ϕ is injective.

Solution. By c), the field M is certainly fixed by the kernel of ϕ, which
is a normal subgroup of GalpN |Kq. Let N 1 be the subfield of N fixed
by the kernel. It is a Galois extension of K containing M . As N is
the Galois closure of M |K, we must have N 1 “ N , so the kernel of ϕ
is trivial.

e) Show that the image of ϕ is a transitive subgroup of H oG.

Solution. Let R be the image of ϕ. By c) and d), we have R –

GalpN |Kq and R X T – ϕ´1pT q – GalpN |Mq, so rR : R X T s “
rGalpN |Kq : GalpN |Mqs “ rM : Ks “ |H| ¨ |G|. The stabilizer of
pid, idq P H ˆ G under the action of R Ď H o G is R X T . Therefore,
the orbit has size rR : R X T s “ |H| ¨ |G|, so the action is indeed
transitive.
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f) Show that another homomorphism ϕ1 : GalpN |Kq Ñ H o G is the
homomorphism resulting from a different choice of pτ 1gqgPG as above
if and only if there is an element a of

ś

gPGH such that ϕ1pσq “

aϕpσqa´1 for all σ P GalpN |Kq. (“ϕ is unique up to conjugation by
elements of

ś

gPGH Ă H oG.”)

Solution. Since τ 1g “ τg, we can write τ 1g “ sgτg for some sg P GalpN |Lq.
Let ag “ sg´1 |M and a “ pagqgPG P

ś

gPGH. It then follows that

ϕ1pσq “ aϕpσqa´1 for all σ P GalpN |Kq.

Conversely, for any a “ pagqgPG P
ś

gPGH, we can choose a lift sg P
GalpN |Lq of ag´1 and then let τg1 “ sgτg.

Problem 4. Let p be an odd prime. Write C2 “ tid, σu and Cp “ xτy and
write elements of

ś

gPC2
Cp as pairs paid, aσq. Show that the following are

the only transitive subgroups of Cp o C2 up to conjugation by elements of
ś

gPC2
Cp:

i) The entire group Cp o C2.

ii) The subgroup of elements of the form ppa, aq, bq with a P Cp and b P C2,
which is isomorphic to the cyclic group C2p of order 2p.

iii) The subgroup of elements of the form ppa, a´1q, bq with a P Cp and
b P C2, which is isomorphic to the dihedral group Dp of order 2p.

Solution. It is easy to verify that the three subgroups given are indeed tran-
sitive subgroups. The group in ii) is the cyclic group generated by ppτ, τq, σq.
In iii), ppτ, τ´1q, idq corresponds to a rotation and ppid, idq, σq corresponds
to a reflection in Dp.

Let G be a transitive subgroup of Cp o C2. We interpret the subgroup N “
ś

hPC2
Cp as the two-dimensional Fp-vector space F2

p. The element σ of C2

acts on N as the reflection r : F2
p Ñ F2

p, px, yq ÞÑ py, xq. The intersection
V “ G XN must be a vector subspace. The set W of vectors w P F2

2 such
that pw, σq P G is a translate of V : It is nonempty by transitivity. If v P V
and w P W , then pv ` w, σq “ pv, idqpw, σq P G, so vw P W . If w1, w2 P W ,
then pw1 ´ w2, idq “ pw1, σqpw2, σq

´1 P G.

If V “ F2
p, then G “ Cp o C2. If V “ 1, then G cannot be a transitive

subgroup of G. Hence, let us assume that V is a line in F2
p. The line V

must be invariant under the reflection r: For any v P V and w PW , we have
prpvq, idq “ pw, σqpv, idqpw, σq´1 P G, so rpvq P V .
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Hence, V must be either the line spanned by p1, 1q or the line spanned by
p1,´1q.

Assume V “ xp1, 1qy and W “ xp1, 1qy ` pa, bq. Conjugating the subgroup
G by pa´b2 , 0q P N , we may assume a “ b “ 0, giving rise to the subgroup in
ii).

On the other hand, if V “ xp1,´1qy and W “ xp1,´1qy ` pa, bq, it follows
that ppa` b, a` bq, idq “ ppa, bq, σqppa, bq, σq P G, so pa` b, a` bq P xp1,´1qy,
which implies that a “ ´b, so pa, bq P xp1,´1qy. Hence, W “ xp1,´1qy,
giving rise to the subgroup in iii).

Problem 5 (Roughly [Klü06]). Fix a prime number p ‰ 2.

a) Let K be a quadratic field extension of Q. Show that if L is an
unramified Galois extension of K with Galois group Cp, then L is a
Galois extension of Q with Galois group Dp (as in Problem 4iii)).

b) Assuming MCS, show that the number of Galois extensions L of Q
with Galois group Dp such that L|K is unramified, where K is the
subfield fixed by the group Cp of rotations in Dp, and |DK | ď T is
„ C ¨ T for T Ñ8 and some constant C ě 0.

c) Order the quadratic number fields K by |DK |. Conclude that (as-
suming MCS), the expected size of the p-torsion subgroup of the class
group of a random quadratic number field K is C ` 1. (Hint: Look at
the Hilbert class field of K.)

Remark. The Cohen–Lenstra heuristics predict that C “
p`1
2p . (This is

currently only known for p “ 3, using the fact that D3 “ S3 and our nice
parametrization of cubic extensions! The average size is 1` 1 for imaginary
quadratic number fields and p´1 ` 1 for real quadratic number fields.) In
fact, they predict with what probability the p-Sylow subgroup of ClpKq is
a given fixed p-group.

Problem 6 (Counterexample to Malle’s conjecture, see [Klü05]). a) Let
L be a Galois extension of K “ Qpζ3q with Galois group C3. Let M
be the Galois closure of L|Q. Show that one of the following is true:

i) The Galois group is GalpM |Qq – C3 o C2 and we have

Nm discpL|Qpζ3qq “ |discpMHq|,

where H Ă C3 o C2 is the stabilizer of pid, idq P C3 ˆ C2.
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ii) The Galois group is GalpM |Qq – C6 and M “ L and

Nm discpL|Qpζ3qq — |discpMq|.

iii) The Galois group is GalpM |Qq – S3 and M “ L and

Nm discpL|Qpζ3qq — |discpMq|.

b) Assuming MCS, show:

i) The number of Galois extensions M of Q with GalpM |Qq – C3oC2

and | discpMHq| ď T is — X1{2.

ii) The number of Galois extensions M of Q with GalpM |Qq – C6

and | discpMq| ď T is — X1{3.

iii) The number of Galois extensions M of Q with GalpM |Qq – S3

and | discpMq| ď T is — X1{3.

c) Assuming MCS, show that the number of Galois extensions L of Qpζ3q

with GalpL|Qpζ3qq – C3 and Nm discpL|Qpζ3qq is — X1{2 logX.

d) Conclude that MCS is false in one of the four cases used above. (In
fact, it turns out that i is wrong and ii, iii, c are correct.)
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Lenstra heuristics”. In: J. Théor. Nombres Bordeaux 18.3 (2006),
pp. 607–615. issn: 1246-7405. url: http://jtnb.cedram.org/
item?id=JTNB_2006__18_3_607_0.

7

https://doi.org/10.1016/j.crma.2005.02.010
https://doi.org/10.1016/j.crma.2005.02.010
https://doi.org/10.1016/j.crma.2005.02.010
https://doi.org/10.1016/j.crma.2005.02.010
http://jtnb.cedram.org/item?id=JTNB_2006__18_3_607_0
http://jtnb.cedram.org/item?id=JTNB_2006__18_3_607_0

