Math 286X: Arithmetic Statistics Spring 2020 Problem set #7

Problem 1. Let K be any field and $n \ge 3$. Consider the action of $\operatorname{PGL}_{n-1}(K) = \operatorname{GL}_{n-1}(K)/K^{\times}$ on the projective space $\mathbb{P}^{n-2}(K) = K^{n-1}/K^{\times}$ given by [M].[v] = [Mv] for $M \in \operatorname{GL}_{n-1}(K)$ and $v \in K^{n-1}$. We say that n points $P_1, \ldots, P_n \in \mathbb{P}^{n-2}(K)$ are in general position if any n-1 of the points span $\mathbb{P}^{n-2}(K)$. (For n = 3, this simply means that the three points $P_1, P_2, P_3 \in \mathbb{P}^1(K)$ are distinct.)

- a) Show that for any *n* points $P_1, \ldots, P_n \in \mathbb{P}^{n-2}(K)$ in general position and any *n* points $Q_1, \ldots, Q_n \in \mathbb{P}^{n-2}(K)$ in general position, there is exactly one $g \in \mathrm{PGL}_{n-1}(K)$ such that $gP_i = Q_i$ for all $i = 1, \ldots, n$. (In other words, $\mathrm{PGL}_{n-1}(K)$ acts simply transitively on the set of *n*-tuples of points in $\mathbb{P}^{n-2}(K)$ in general position.)
- b) Consider the action of $\operatorname{PGL}_{n-1}(K)$ on the set of sets X of n points in $\mathbb{P}^{n-1}(K)$ in general position. Show that the stabilizer of any such set X is isomorphic to S_n .

Problem 2. Consider the trivial cubic extension $S = \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ of \mathbb{Z} . Find all cubic subextensions $S' \subset S$ of \mathbb{Z} of index $[S : S'] \in \{p, p^2, p^3\}$, where p is prime.

Hint: Use the appropriate normal form

Definition. We call a degree n extension S of a Dedekind domain R monogenic if the R-algebra S is generated by one element: $S = R[\alpha]$ for some $\alpha \in S$.

Problem 3. a) Show that the trivial degree n extension $S = \mathbb{Z}_p \times \cdots \times \mathbb{Z}_p$ of \mathbb{Z}_p is monogenic if and only if $n \leq p$.

- b) Let K be a degree n field extension of \mathbb{Q} in which some (unramified) prime p < n splits completely. Show that the extension \mathcal{O}_K of \mathbb{Z} is not monogenic.
- c) Show that for any $n \ge 1$ and any prime number p, there is a degree n field extension of \mathbb{Q} in which the (unramified) prime p splits completely.

Problem 4. Let R be a principal ideal domain and let the cubic form $f(X,Y) = aX^3 + bX^2Y + cXY^2 + dY^3 \in \mathcal{V}(R)$ correspond to the cubic extension S of R with basis $(1, \omega_1, \omega_2)$.

- a) Show that $S = R[\omega_1]$ if and only if $a \in R^{\times}$.
- b) Show that S is monogenic if and only if $f(x, y) \in \mathbb{R}^{\times}$ for some $x, y \in \mathbb{R}$.

Problem 5. Order the cubic field extensions $K|\mathbb{Q}$ by $|D_K|$.

- a) Show that a random K is totally real with probability 1/4.
- b) For a fixed prime number p, show that a random K is unramified at p with probability $1/(1 + p^{-1} + p^{-2})$.
- c) For a fixed prime number p, consider only those K which are unramified at p. Fix a partition $n = k_1 + \cdots + k_r$. Show that the (conditional) probability that K has splitting type (k_1, \ldots, k_r) at p equals the probability that a random $\pi \in S_n$ has cycle type (k_1, \ldots, k_r) .
- d) For a fixed prime number p, show that a random K is totally ramified at p with probability $1/(1 + p + p^2)$.
- e) Fix some $s \ge 0$. Show that a random K is ramified at only s primes with probability zero (just like a random integer is only divisible by s primes with probability zero).