Math 286X: Arithmetic Statistics Spring 2020 Problem set #5

Problem 1. Consider a measure-preserving action of a countable group G on a set X. Let $\tilde{\mathcal{F}}$ be a measurable almost fundamental domain for this action, with volume $0 < \operatorname{vol}(\tilde{\mathcal{F}}) < \infty$. Show that the corresponding fundamental domain \mathcal{F} also has volume $0 < \operatorname{vol}(\mathcal{F}) < \infty$.

Problem 2. Order the full integer lattices $\Lambda \subseteq \mathbb{Z}^n$ by their covolume.

a) Let e_1, \ldots, e_n be the standard basis of \mathbb{Z}^n . Show that

 $\mathbb{P}(e_1 \in \Lambda \mid \Lambda \subseteq \mathbb{Z}^n \text{ full lattice}) = 0.$

b) Let $\pi : \mathbb{Z}^n \to \mathbb{Z}^{n-1}$ be the projection onto the first n-1 coordinates. Then, $\pi(\Lambda) \subseteq \mathbb{Z}^{n-1}$ is always a full lattice. Show that

$$\mathbb{P}(\pi(\Lambda) = \mathbb{Z}^{n-1} \mid \Lambda \subseteq \mathbb{Z}^n \text{ full lattice}) = \frac{1}{\zeta(2)\cdots\zeta(n)}.$$

Problem 3 (Mahler's criterion). Equip $\operatorname{GL}_n(\mathbb{Z}) \setminus \operatorname{GL}_n(\mathbb{R})$ with the quotient topology. Let X be a closed subset of $\operatorname{GL}_n(\mathbb{Z}) \setminus \operatorname{GL}_n(\mathbb{R})$. Show that X is compact if and only if there exist $0 < C \leq C' < \infty$ such that the successive minima $\lambda_1 \leq \cdots \leq \lambda_n$ of any lattice Λ corresponding to an element of X satisfy $C \leq \lambda_1 \leq \cdots \leq \lambda_n \leq C'$.

Hint: Use the Iwasawa decomposition and Siegel's almost fundamental domain.

Problem 4 (lattice points in cusps). For any $\alpha \in \mathbb{R}$ and any X > 0, consider the compact set

$$S_{\alpha}(X) = \{(x, y) \in \mathbb{R}^2 \mid 1 \leq x \leq X \text{ and } |y - \alpha x| \leq \frac{1}{x}\}$$

and let $N_{\alpha}(X) = \#(S_{\alpha}(X) \cap \mathbb{Z}^2).$

a) Show that its Lebesgue measure is $vol(S_{\alpha}(X)) = 2 \log X$.

b) (strangeness) Let $\alpha = \frac{p}{q}$ with gcd(p,q) = 1. Show that

$$N_{\alpha}(X) = \frac{X}{q} + \mathcal{O}(q).$$

c) (Dirichlet's approximation theorem) Show that for any $\alpha \in \mathbb{R}$, we have

$$\lim_{X \to \infty} N_{\alpha}(X) = \infty.$$

d) (averaging) For any a < b, show that

$$\frac{1}{b-a} \int_{a}^{b} N_{\alpha}(X) d\alpha = 2 \log X + \mathcal{O}\left(1 + \frac{1}{b-a}\right).$$

Problem 5 (smooth functions are swell). Let A be a weighted set on \mathbb{R} whose characteristic function $\chi_A : \mathbb{R} \to \mathbb{R}^{\geq 0}$ is smooth and whose support is bounded. Let $k \geq 0$. Show that

$$#((T \cdot A) \cap \mathbb{Z}) = T \cdot \operatorname{vol}(A) + \mathcal{O}_{A,k}(T^{-k})$$

for $T \to \infty$. (Note that the error term is much better than the error term $\mathcal{O}(1)$ we would get if A were an interval!)

Hint: For example, apply the Poisson summation formula or the Euler-Maclaurin formula (both use integration by parts).

Problem 6. Fix a number $n \ge 1$ and let $\operatorname{GL}_n(\mathbb{R}) = NAK$ and $\operatorname{SL}_n(\mathbb{R}) = NA_1K_1$ be the Iwasawa decompositions defined in class.

a) Let $B = (\mathbb{R}^{>0})^{n-1}$ (with Haar measure $d^{\times}\mathfrak{b} = \prod_i \mathfrak{b}_i^{-1}d\mathfrak{b}_i$) and consider the isomorphism $B \to A_1$ sending $\mathfrak{b} \in B$ to $\mathfrak{a} \in A_1$, where $\mathfrak{b}_i^n = \mathfrak{a}_{i+1}/\mathfrak{a}_i$ and conversely $\mathfrak{a}_i = (\mathfrak{b}_1 \cdots \mathfrak{b}_{i-1})^n/(\mathfrak{b}_1^{n-1} \cdots \mathfrak{b}_{n-1})$. Show that the pull-back of the Haar measure on $\mathrm{SL}_n(\mathbb{R})$ defined in class along the diffeomorphism $N \times B \times K_1 \to \mathrm{SL}_n(\mathbb{R})$ arising from the Iwasawa decomposition is as follows (with $(\mathfrak{n}, \mathfrak{b}, \mathfrak{k}) \in N \times B \times K_1$):

$$n^{n-2} \cdot \prod_{j=1}^{n-1} \mathfrak{b}_j^{-nj(n-j)} \mathrm{d}^{\times} \mathfrak{n} \mathrm{d}^{\times} \mathfrak{b} \mathrm{d}^{\times} \mathfrak{k}.$$

b) Let $\widetilde{\mathcal{F}} = N'A'K \subset \operatorname{GL}_n(\mathbb{R})$ be Siegel's almost fundamental domain for $\operatorname{GL}_n(\mathbb{Z}) \setminus \operatorname{GL}_n(\mathbb{R})$. Compute the volume of $\widetilde{\mathcal{F}} \cap \operatorname{SL}_n(\mathbb{R})$ with respect to the Haar measure on $\operatorname{SL}_n(\mathbb{R})$ defined in class.

Problem 7. Don't worry, be happy.