Math 286X: Arithmetic Statistics

Spring 2020

Problem set \#4

Problem 1 (Compare with problem 2 on problem set 3). Let $A \subset \mathbb{R}$ be a compact subset and let $I \subset \mathbb{R}$ be a bounded interval. Let $B \subset \mathbb{R}$ be the weighted set whose characteristic function is the convolution

$$
\chi_{B}(x)=\frac{1}{\operatorname{vol}(I)} \cdot \int_{\mathbb{R}} \chi_{A}(x-s) \chi_{I}(s) \mathrm{d} s=\frac{1}{\operatorname{vol}(I)} \cdot \int_{\mathbb{R}} \chi_{A}(s) \chi_{I}(x-s) \mathrm{d} s
$$

Show that

$$
\#((T \cdot B) \cap \mathbb{Z}) \sim_{A, I} \operatorname{vol}(A) \cdot T
$$

for $T \rightarrow \infty$.
Problem 2. Explicitly describe fundamental domains for the following actions:
a) The action of \mathbb{Z}_{p} on \mathbb{Q}_{p} by translation.
b) The action of $\mathbb{Z}_{(p)}=\left\{p^{a} b \mid a, b \in \mathbb{Z}\right\} \subset \mathbb{Q}$ on $\mathbb{R} \times \mathbb{Q}_{p}$ given by $g .(x, y)=$ $(g+x, g+y)$.

Problem 3. Let $\mathcal{V}(\mathbb{Z})$ be the set of quadratic forms $a X^{2}+b X Y+c Y^{2}$ with $a, b, c \in \mathbb{Z}$, ordered by $\max (|a|,|b|,|c|)$. Let p be a prime number. Call an integer $D \in \mathbb{Z}$ fundamental at p if $p^{2} \nmid D$ when $p \neq 2$ and if $D \equiv 1 \bmod 4$ or $D \equiv 8,12 \bmod 16$ when $p=2$. (This means that $D \neq 1$ is a fundamental discriminant if and only if it is fundamental at every prime p.) Show that

$$
\mathbb{P}(\operatorname{disc}(f) \text { is fundamental at } p \mid f \in \mathcal{V}(\mathbb{Z}))=1-p^{-2}-p^{-3}+p^{-4} .
$$

(Feel free to use a computer.)
Problem 4. Let K be a quadratic number field of discriminant D. In class, we've constructed a bijection

$$
\mathrm{Cl}_{K}=K^{\times} \backslash\{I \text { fractional ideal of } K\} \longleftrightarrow \mathrm{GL}_{2}(\mathbb{Z}) \backslash \mathcal{V}_{\text {disc }=D}(\mathbb{Z}) .
$$

Let $\mathcal{W}(\mathbb{Z})=\mathcal{V}(\mathbb{Z}) \times \mathbb{Z}^{2}$ be the set of pairs $e=(f, v)$, where f is a binary quadratic form with integer coefficients, and $v \in \mathbb{Z}^{2}$. Let $\operatorname{disc}(e)=\operatorname{disc}(f)$
and $\operatorname{Nm}(e)=f(v)$. Furthermore, let $\mathrm{GL}_{2}(\mathbb{Z})$ act on $\mathcal{W}(\mathbb{Z})$ by $M \cdot(f, v)=$ $\left(M . f, \operatorname{det}(M)\left(M^{T}\right)^{-1} v\right)$ (where the action on $\mathcal{V}(\mathbb{Z})$ was defined in class by $\left.(M . f)(w)=f\left(M^{T} w\right) / \operatorname{det}(M)\right)$. For any $N \geqslant 1$, let $\mathcal{W}_{\text {disc }=D,|\operatorname{Nm}|=N} \subset \mathcal{W}$ be the set of $e \in \mathcal{W}$ with $\operatorname{disc}(e)=D$ and $|\operatorname{Nm}(e)|=N$.
a) Construct a bijection

$$
\left\{I \subseteq \mathcal{O}_{K} \text { ideal of } \mathcal{O}_{K} \mid \operatorname{Nm}(I)=N\right\} \longleftrightarrow \mathrm{GL}_{2}(\mathbb{Z}) \backslash \mathcal{W}_{\text {disc }=D,|\operatorname{Nm}|=N}(\mathbb{Z}) .
$$

b) What is the $\mathrm{GL}_{2}(\mathbb{Z})$-stabilizer of an element of $\mathcal{W}_{\text {disc }=D,|\operatorname{Nm}|=N}(\mathbb{Z})$?

