Math 286X: Arithmetic Statistics Spring 2020

Problem set #3

Problem 1. Let $A \subset \mathbb{R}^n$ be a bounded set whose boundary is Lipschitz. Let $k \ge 1$ and $y \in (\mathbb{Z}/k\mathbb{Z})^n$. Show that

$$\lim_{T \to \infty} \mathbb{P}(x \equiv y \mod k \mid x \in (T \cdot A) \cap \mathbb{Z}^n) = \frac{1}{k^n}.$$

Problem 2. Find a compact subset $A \subset \mathbb{R}$ with positive volume, but so that

$$\liminf_{T \to \infty} \#((T \cdot A) \cap \mathbb{Z}) = 0.$$

Problem 3. Identify the space V_n of monic polynomials of degree n with \mathbb{R}^n by sending $f(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_0 \in \mathbb{R}[X]$ to (a_{n-1}, \ldots, a_0) . Consider the map $\varphi_n : \mathbb{R}^n \to V_n \cong \mathbb{R}^n$ sending $x = (x_1, \ldots, x_n)$ to $f(X) = \prod_i (X - x_i)$.

- a) Show that the Jacobian determinant at $x \in \mathbb{R}^n$ is $(-1)^n \prod_{i < j} (x_i x_j)$.
- b) Show that the volume of the image $\varphi_3([-1,1]^3) \subset V_3 \cong \mathbb{R}^3$ is 16/45. (Use a computer if you like.)

Problem 4. Fix some $n \ge 2$. Order the algebraic integers $\alpha \in \overline{\mathbb{Z}}$ of degree n and trace 0 by length $|\alpha|$. Let $\operatorname{disc}(\alpha)$ be the discriminant of the ring $\mathbb{Z}[\alpha]$. We always have $|\operatorname{disc}(\alpha)| \ll_n |\alpha|^{n(n-1)}$. Show that

$$\lim_{\varepsilon \to 0} \mathbb{P}(|\operatorname{disc}(\alpha)| \ge \varepsilon |\alpha|^{n(n-1)} \mid \alpha \text{ as above}) = 1.$$

Problem 5. Fix some $n \ge 2$. Order the algebraic integers $\alpha \in \overline{\mathbb{Z}}$ of degree n and trace 0 by length $|\alpha|$. Let $\lambda_1(\alpha) \le \cdots \le \lambda_n(\alpha)$ be the successive minima of the lattice $\mathbb{Z}[\alpha] \subset \mathbb{R}^n$ (with respect to the Euclidean norm on \mathbb{R}^n , say). We know that $\lambda_1(\alpha) \simeq_n 1$. Since $1, \alpha, \ldots, \alpha^{n-1}$ are linearly independent, it is also clear that $\lambda_i(\alpha) \ll_n |\alpha|^i$ for $i = 1, \ldots, n-1$. Show that

$$\lim_{\varepsilon \to 0} \mathbb{P}_{\inf}(\lambda_i(\alpha) \ge \varepsilon |\alpha|^i \text{ for } i = 1, \dots, n-1 \mid \alpha \text{ as above}) = 1.$$

(In particular, assuming ε is small enough, for a positive proportion of α , we have $\lambda_i(\alpha) \ge \varepsilon |\alpha|^i$ for $i = 1, \ldots, n-1$. — "The lattice $\mathbb{Z}[\alpha]$ is almost never balanced.")

Problem 6 (completely unnecessary for us). a) Show that if a monic polynomial $f(X) = X^3 + a_2X^2 + a_1X + a_0 \in \mathbb{R}[X]$ has a root $x \in \mathbb{C}$ with |x| = 1, then $1 + a_2 + a_1 + a_0 = 0$ or

or

$$a_2a_0 - a_0^2 - a_1 + 1 = 0.$$

 $-1 + a_2 - a_1 + a_0 = 0$

b) (if you know algebraic geometry or resultants) Show that for any $n \ge 1$, there is a nonzero polynomial $C(A_{n-1}, \ldots, A_0) \in \mathbb{Z}[A_{n-1}, \ldots, A_0]$ such that for any monic polynomial $f(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_0 \in \mathbb{R}[X]$, which has a root $x \in \mathbb{C}$ with |x| = 1, we have $C(a_{n-1}, \ldots, a_0) = 0$. (And how would you compute such a polynomial C?)

Problem 7. An isomorphism of graphs G = (V, E) and G' = (V', E') is a bijection $f : V \to V'$ between the sets of vertices such that $(x, y) \in E$ if and only if $(f(x), f(y)) \in E'$. Consider the set of undirected graphs Gwith n vertices (without loops, i.e., without edges of the form (x, x)), up to isomorphism. Show that

$$\sum_{G} \frac{1}{\# \operatorname{Aut}(G)} = \frac{2^{n(n-1)/2}}{n!}.$$