Math 286X: Arithmetic Statistics

Spring 2020

Problem set \#3

Problem 1. Let $A \subset \mathbb{R}^{n}$ be a bounded set whose boundary is Lipschitz. Let $k \geqslant 1$ and $y \in(\mathbb{Z} / k \mathbb{Z})^{n}$. Show that

$$
\lim _{T \rightarrow \infty} \mathbb{P}\left(x \equiv y \quad \bmod k \mid x \in(T \cdot A) \cap \mathbb{Z}^{n}\right)=\frac{1}{k^{n}}
$$

Problem 2. Find a compact subset $A \subset \mathbb{R}$ with positive volume, but so that

$$
\liminf _{T \rightarrow \infty} \#((T \cdot A) \cap \mathbb{Z})=0 .
$$

Problem 3. Identify the space V_{n} of monic polynomials of degree n with \mathbb{R}^{n} by sending $f(X)=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0} \in \mathbb{R}[X]$ to $\left(a_{n-1}, \ldots, a_{0}\right)$. Consider the map $\varphi_{n}: \mathbb{R}^{n} \rightarrow V_{n} \cong \mathbb{R}^{n}$ sending $x=\left(x_{1}, \ldots, x_{n}\right)$ to $f(X)=$ $\prod_{i}\left(X-x_{i}\right)$.
a) Show that the Jacobian determinant at $x \in \mathbb{R}^{n}$ is $(-1)^{n} \prod_{i<j}\left(x_{i}-x_{j}\right)$.
b) Show that the volume of the image $\varphi_{3}\left([-1,1]^{3}\right) \subset V_{3} \cong \mathbb{R}^{3}$ is $16 / 45$. (Use a computer if you like.)
Problem 4. Fix some $n \geqslant 2$. Order the algebraic integers $\alpha \in \overline{\mathbb{Z}}$ of degree n and trace 0 by length $|\alpha|$. Let disc (α) be the discriminant of the ring $\mathbb{Z}[\alpha]$. We always have $|\operatorname{disc}(\alpha)|<_{n}|\alpha|^{n(n-1)}$. Show that

$$
\lim _{\varepsilon \rightarrow 0} \mathbb{P}\left(|\operatorname{disc}(\alpha)| \geqslant \varepsilon|\alpha|^{n(n-1)} \mid \alpha \text { as above }\right)=1
$$

Problem 5. Fix some $n \geqslant 2$. Order the algebraic integers $\alpha \in \overline{\mathbb{Z}}$ of degree n and trace 0 by length $|\alpha|$. Let $\lambda_{1}(\alpha) \leqslant \cdots \leqslant \lambda_{n}(\alpha)$ be the successive minima of the lattice $\mathbb{Z}[\alpha] \subset \mathbb{R}^{n}$ (with respect to the Euclidean norm on \mathbb{R}^{n}, say). We know that $\lambda_{1}(\alpha) \simeq_{n} 1$. Since $1, \alpha, \ldots, \alpha^{n-1}$ are linearly independent, it is also clear that $\lambda_{i}(\alpha)<_{n}|\alpha|^{i}$ for $i=1, \ldots, n-1$. Show that

$$
\lim _{\varepsilon \rightarrow 0} \mathbb{P}_{\text {inf }}\left(\lambda_{i}(\alpha) \geqslant \varepsilon|\alpha|^{i} \text { for } i=1, \ldots, n-1 \mid \alpha \text { as above }\right)=1 .
$$

(In particular, assuming ε is small enough, for a positive proportion of α, we have $\lambda_{i}(\alpha) \geqslant \varepsilon|\alpha|^{i}$ for $i=1, \ldots, n-1$. - "The lattice $\mathbb{Z}[\alpha]$ is almost never balanced.")

Problem 6 (completely unnecessary for us). a) Show that if a monic polynomial $f(X)=X^{3}+a_{2} X^{2}+a_{1} X+a_{0} \in \mathbb{R}[X]$ has a root $x \in \mathbb{C}$ with $|x|=1$, then

$$
1+a_{2}+a_{1}+a_{0}=0
$$

or

$$
-1+a_{2}-a_{1}+a_{0}=0
$$

or

$$
a_{2} a_{0}-a_{0}^{2}-a_{1}+1=0
$$

b) (if you know algebraic geometry or resultants) Show that for any $n \geqslant 1$, there is a nonzero polynomial $C\left(A_{n-1}, \ldots, A_{0}\right) \in \mathbb{Z}\left[A_{n-1}, \ldots, A_{0}\right]$ such that for any monic polynomial $f(X)=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0} \in$ $\mathbb{R}[X]$, which has a root $x \in \mathbb{C}$ with $|x|=1$, we have $C\left(a_{n-1}, \ldots, a_{0}\right)=$ 0 . (And how would you compute such a polynomial C ?)

Problem 7. An isomorphism of graphs $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a bijection $f: V \rightarrow V^{\prime}$ between the sets of vertices such that $(x, y) \in E$ if and only if $(f(x), f(y)) \in E^{\prime}$. Consider the set of undirected graphs G with n vertices (without loops, i.e., without edges of the form (x, x)), up to isomorphism. Show that

$$
\sum_{G} \frac{1}{\# \operatorname{Aut}(G)}=\frac{2^{n(n-1) / 2}}{n!}
$$

