Math 286X: Arithmetic Statistics Spring 2020 Problem set #2

Problem 1. Let L|K be a finite Galois extension of number fields with Galois group G. Order the primes \mathfrak{P} of L by $\operatorname{Nm}(\mathfrak{P} \cap K)$. Fix some $g \in G$. Show that

$$\mathbb{P}(\operatorname{Frob}(\mathfrak{P}|\mathfrak{P} \cap K) = g \mid \mathfrak{P} \text{ prime of } L) = \frac{\frac{1}{\operatorname{ord}(g)}}{\sum_{g' \in G} \frac{1}{\operatorname{ord}(g')}}.$$

Problem 2. Let Λ be a full lattice in \mathbb{R}^2 and let K be a centrally symmetric convex compact subset of \mathbb{R}^2 . Let the successive minima be $\lambda_1 \leq \lambda_2$. Show that the lattice Λ (not just the vector space \mathbb{R}^2) has a basis (l_1, l_2) such that $l_1 \in \lambda_1 K$ and $l_2 \in \lambda_2 K$.

Hint: Use Pick's theorem.

Problem 3. Let K be the smallest centrally symmetric convex subset of \mathbb{R}^3 that contains (1,0,0), (0,1,0), and (1,1,2). Let $\lambda_1 \leq \lambda_2 \leq \lambda_3$ be the successive minima of $\Lambda = \mathbb{Z}^3$. Show that the vectors in $\lambda_3 K \cap \Lambda$ don't generate the lattice Λ (only the vector space \mathbb{R}^3).

Problem 4. Let $K \subset \mathbb{R}^2$ be the closed disc of radius 1 (with respect to the standard Euclidean length $|\cdot|$ on \mathbb{R}^2) and let $\Lambda \subset \mathbb{R}^2$ be any full lattice with successive minima $\lambda_1 \leq \lambda_2$. Show that a basis (l_1, l_2) of \mathbb{R}^2 is reduced $(|l_1| = \lambda_1 \text{ and } |l_2| = \lambda_2)$ if and only if $|l_1| \leq |l_2|$ and $|l_1 \cdot l_2| \leq \frac{1}{2}|l_1|^2$.

Let K be a number field of degree n with r_1 real embeddings and r_2 pairs of complex embeddings and with discriminant D_K . We consider the successive minima $1 = \lambda_1 \leq \cdots \leq \lambda_n$ of $\mathcal{O}_K \subset \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}$ with respect to the norm $|(x_1, \ldots, x_{r_1}, y_1, \ldots, y_{r_2})| = \max(|x_1|, \ldots, |x_{r_1}|, |y_1|, \ldots, |y_{r_2}|).$

Problem 5. Let $K = \mathbb{Q}(\sqrt{p}, \sqrt{q})$ for prime numbers p < q.

- a) Show that $D_K \simeq p^2 q^2$ and $[\mathcal{O}_K : \mathbb{Z}[\sqrt{p}, \sqrt{q}]] \simeq 1$.
- b) Show that $\lambda_2 \approx \sqrt{p}$ and $\lambda_3 \approx \sqrt{q}$ and $\lambda_4 \approx \sqrt{pq}$.

Problem 6 ([Cou19, section 2]). We have seen in class that

$$\lambda_i \ll_n |D_K|^{1/(2(n-i+1))}$$
 for $i = 2, \dots, n$.

In particular,

$$\lambda_n \ll_n |D_K|^{1/2}.$$

Show that in fact

$$\lambda_n \ll_n |D_K|^{1/(\lceil n/2\rceil + 1)}$$

Hint: Let l_1, \ldots, l_n be a reduced basis of \mathbb{R}^n , with $|l_i| = \lambda_i$. Let r > n/2. Prove that the integers $l_i l_j$ with $1 \leq i, j \leq r$ together generate K as a \mathbb{Q} -vector space.

Hint 2: Otherwise the *r*-dimensional space spanned by l_1, \ldots, l_r would be perpendicular to itself with respect to some nondegenerate symmetric bilinear form on K.

References

[Cou19] Jean-Marc Couveignes. *Enumerating number fields*. 2019. arXiv: 1907.13617 [math.NT].