Math 286X: Arithmetic Statistics

Spring 2020

Problem set \#2

Problem 1. Let $L \mid K$ be a finite Galois extension of number fields with Galois group G. Order the primes \mathfrak{P} of L by $\operatorname{Nm}(\mathfrak{P} \cap K)$. Fix some $g \in G$. Show that

$$
\mathbb{P}(\operatorname{Frob}(\mathfrak{P} \mid \mathfrak{P} \cap K)=g \mid \mathfrak{P} \text { prime of } L)=\frac{\frac{1}{\operatorname{ord}(g)}}{\sum_{g^{\prime} \in G} \frac{1}{\operatorname{ord}\left(g^{\prime}\right)}}
$$

Problem 2. Let Λ be a full lattice in \mathbb{R}^{2} and let K be a centrally symmetric convex compact subset of \mathbb{R}^{2}. Let the successive minima be $\lambda_{1} \leqslant \lambda_{2}$. Show that the lattice Λ (not just the vector space \mathbb{R}^{2}) has a basis $\left(l_{1}, l_{2}\right)$ such that $l_{1} \in \lambda_{1} K$ and $l_{2} \in \lambda_{2} K$.

Hint: Use Pick's theorem.

Problem 3. Let K be the smallest centrally symmetric convex subset of \mathbb{R}^{3} that contains $(1,0,0),(0,1,0)$, and $(1,1,2)$. Let $\lambda_{1} \leqslant \lambda_{2} \leqslant \lambda_{3}$ be the successive minima of $\Lambda=\mathbb{Z}^{3}$. Show that the vectors in $\lambda_{3} K \cap \Lambda$ don't generate the lattice Λ (only the vector space \mathbb{R}^{3}).

Problem 4. Let $K \subset \mathbb{R}^{2}$ be the closed disc of radius 1 (with respect to the standard Euclidean length $|\cdot|$ on \mathbb{R}^{2}) and let $\Lambda \subset \mathbb{R}^{2}$ be any full lattice with successive minima $\lambda_{1} \leqslant \lambda_{2}$. Show that a basis $\left(l_{1}, l_{2}\right)$ of \mathbb{R}^{2} is reduced $\left(\left|l_{1}\right|=\lambda_{1}\right.$ and $\left.\left|l_{2}\right|=\lambda_{2}\right)$ if and only if $\left|l_{1}\right| \leqslant\left|l_{2}\right|$ and $\left|l_{1} \cdot l_{2}\right| \leqslant \frac{1}{2}\left|l_{1}\right|^{2}$.

Let K be a number field of degree n with r_{1} real embeddings and r_{2} pairs of complex embeddings and with discriminant D_{K}. We consider the successive minima $1=\lambda_{1} \leqslant \cdots \leqslant \lambda_{n}$ of $\mathcal{O}_{K} \subset \mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}}$ with respect to the norm $\left|\left(x_{1}, \ldots, x_{r_{1}}, y_{1}, \ldots, y_{r_{2}}\right)\right|=\max \left(\left|x_{1}\right|, \ldots,\left|x_{r_{1}}\right|,\left|y_{1}\right|, \ldots,\left|y_{r_{2}}\right|\right)$.

Problem 5. Let $K=\mathbb{Q}(\sqrt{p}, \sqrt{q})$ for prime numbers $p<q$.
a) Show that $D_{K}=p^{2} q^{2}$ and $\left[\mathcal{O}_{K}: \mathbb{Z}[\sqrt{p}, \sqrt{q}]\right]=1$.
b) Show that $\lambda_{2} \asymp \sqrt{p}$ and $\lambda_{3} \asymp \sqrt{q}$ and $\lambda_{4} \asymp \sqrt{p q}$.

Problem 6 (Cou19, section 2]). We have seen in class that

$$
\lambda_{i} «_{n}\left|D_{K}\right|^{1 /(2(n-i+1))} \quad \text { for } i=2, \ldots, n .
$$

In particular,

$$
\lambda_{n}<_{n}\left|D_{K}\right|^{1 / 2} .
$$

Show that in fact

$$
\lambda_{n}<_{n}\left|D_{K}\right|^{1 /([n / 2]+1)} .
$$

Hint: Let l_{1}, \ldots, l_{n} be a reduced basis of \mathbb{R}^{n}, with $\left|l_{i}\right|=\lambda_{i}$. Let $r>n / 2$. Prove that the integers $l_{i} l_{j}$ with $1 \leqslant i, j \leqslant r$ together generate K as a \mathbb{Q} vector space.
Hint 2: Otherwise the r-dimensional space spanned by l_{1}, \ldots, l_{r} would be perpendicular to itself with respect to some nondegenerate symmetric bilinear form on K.

References

[Cou19] Jean-Marc Couveignes. Enumerating number fields. 2019. arXiv: 1907.13617 [math.NT].

