Math 286X: Arithmetic Statistics

Spring 2020

Problem set \#1

Problem 1. Fix a polynomial $f(X) \in \mathbb{Z}[X]$ of degree 1 or 2 . Show that

$$
\mathbb{P}(f(x) \text { squarefree } \mid x \in \mathbb{Z})=\prod_{p \text { prime }} \mathbb{P}\left(f(x) \not \equiv 0 \quad \bmod p^{2} \mid x \in \mathbb{Z}\right) .
$$

(Also think about what goes wrong in the proof for large degrees.)
Problem 2. For each prime number p, fix a residue class $c_{p} \in \mathbb{F}_{p}$. Show that

$$
\mathbb{P}\left(x \not \equiv c_{p} \quad \bmod p \quad \forall p \mid x \in \mathbb{Z}\right)=0
$$

Problem 3. Fix an odd prime l. Order the quadratic number fields K by $|\operatorname{disc}(K)|$. Show that

$$
\mathbb{P}(K \text { unramified at } l \mid K \text { quadratic number field })=\frac{l}{l+1} .
$$

Problem 4. Let $n \geqslant 2$. Show that the number of squarefree monic polynomials $f(X) \in \mathbb{F}_{q}[X]$ of degree n is $q^{n}-q^{n-1}$. (Hint: Every monic polynomial $a(X)$ can be written uniquely as $a(X)=f(X) g(X)^{2}$, where $f(X)$ is squarefree and both $f(X)$ and $g(X)$ are monic.)
Problem 5. Show that there are sets $S_{p} \subseteq \mathbb{F}_{p}$ (for prime p) such that

$$
\mathbb{P}\left((x \bmod p) \in S_{p} \quad \forall p \mid x \in \mathbb{Z}\right)=0
$$

but

$$
\prod_{p} \mathbb{P}\left(x \in S_{p} \mid x \in \mathbb{F}_{p}\right)>0 .
$$

Problem 6. Order pairs $(x, y) \in \mathbb{N}^{2}$ by $\max (x, y)$. What is

$$
\mathbb{P}\left(\operatorname{gcd}(x, y)=1 \mid(x, y) \in \mathbb{N}^{2}\right) ?
$$

Problem 7 (If you know about Dirichlet series and how to make use of their complex analysis). Use Dirichlet series to prove that

$$
\mathbb{P}(x \text { squarefree } \mid x \in \mathbb{N})=\frac{1}{\zeta(2)}
$$

Problem 8. For any $t \in \mathbb{F}_{q}$, the discriminant of the polynomial $f_{t}(X)=$ $X^{3}-t X^{2}+(t-3) X+1$ is a square: $\operatorname{disc}\left(f_{t}\right)=\left(9-3 t+t^{2}\right)^{2}$. Assuming the discriminant is nonzero (the polynomial $f_{t}(X)$ is squarefree), this implies that either $f_{t}(X)$ splits into linear factors, or its Galois group is the cyclic group $A_{3} \subset S_{3}$ of degree three. Show that

$$
\lim _{q \rightarrow \infty} \mathbb{P}\left(f_{t}(X) \text { splits into linear factors } \mid t \in \mathbb{F}_{q}\right)=\mathbb{P}\left(g=\mathrm{id} \mid g \in A_{3}\right)=\frac{1}{3}
$$

Problem 9. Here are two ways to estimate the number $N(T)$ of pairs $(x, y) \in \mathbb{N}^{2}$ such that $x^{2} y \leqslant T$:
a) $N(T)=\sum_{1 \leqslant x \leqslant \sqrt{T}} \#\left\{1 \leqslant y \leqslant \frac{T}{x^{2}}\right\} \approx \sum_{1 \leqslant x \leqslant \sqrt{T}} \frac{T}{x^{2}} \approx T \cdot \sum_{x=1}^{\infty} \frac{1}{x^{2}}=\zeta(2) \cdot T$.
b) $N(T)=\sum_{1 \leqslant y \leqslant T} \#\left\{1 \leqslant x \leqslant \sqrt{\frac{T}{y}}\right\} \approx \sum_{1 \leqslant y \leqslant T} \sqrt{\frac{T}{y}} \approx \sqrt{T} \cdot \sum_{1 \leqslant y \leqslant T} y^{-1 / 2} \approx 2 \cdot T$.

Which is better for large T ? Can you give an error bound for the better one?

Problem 10. Let a, b, c be a 2 -cycle, an ($n-1$)-cycle, and an n-cycle in $S_{n}($ where $n \geqslant 2)$. Show that they together generate the entire symmetric group S_{n}.

