GETTING AWAY WITHOUT INFRASTRUCTURES

1. A GENERALIZATION OF FUNDAMENTAL DOMAINS

Let G be a topological group acting transitively on a set X. Fix some $x_0 \in X$ and assume that the stabilizer $S_0 = \operatorname{Stab}_G(x_0)$ is a unimodular group, with Haar measure ds. Write any $x \in X$ as $x = gx_0$ with $g \in G$. Of course, $\operatorname{Stab}_G(x) = gS_0g^{-1}$ is isomorphic to S_0 , so we obtain a Haar measure on $\operatorname{Stab}_G(x)$ for any $x \in X$. (Note that it is independent of the choice of g.)

Let H be a countable subgroup of G and assume that \mathcal{F} is a fundamental domain for the left action of H on G. We then define a weighted set \mathcal{A} on X by letting

$$\chi_{\mathcal{A}}(x) = \int_{S_0} \chi_{\mathcal{F}}(gs) ds = \int_{\operatorname{Stab}_G(x)} \chi_{\mathcal{F}}(sg) ds$$

for $x = gx_0 \in X$. (Assuming the integral exists!) This is again independent of the choice of g.

The following lemma shows that \mathcal{A} is some sort of generalization of a fundamental domain for the action of H on X, which allows us not to count orbits, but to find the sum of the covolume of the orbits' H-stabilizers in the G-stabilizers.

Lemma 1. Summing over the elements of an H-orbit Hx_1 in X, we have

$$\sum_{x \in Hx_1} \chi_{\mathcal{A}}(x) = \operatorname{vol}(\operatorname{Stab}_H(x_1) \setminus \operatorname{Stab}_G(x_1)),$$

the volume of a measurable fundamental domain \mathcal{B} for the left action of $\operatorname{Stab}_H(x_1)$ on $\operatorname{Stab}_G(x_1)$.

Proof. Let $x_1 = gx_0$. We then have

$$\begin{split} \sum_{x \in Hx_1} \chi_{\mathcal{A}}(x) &= \sum_{h \in H/\operatorname{Stab}_H(x_1)} \chi_{\mathcal{A}}(hx_1) \\ &= \sum_{h \in H/\operatorname{Stab}_H(x_1)} \int_{\operatorname{Stab}_G(hx_1)} \chi_{\mathcal{F}}(shg) ds \\ &= \sum_{h \in H/\operatorname{Stab}_H(x_1)} \int_{\operatorname{Stab}_G(x_1)} \sum_{t \in \operatorname{Stab}_H(x_1)} \chi_{\mathcal{B}}(ts) \chi_{\mathcal{F}}(hsg) ds \\ &= \sum_{h \in H/\operatorname{Stab}_H(x_1)} \int_{\operatorname{Stab}_G(x_1)} \sum_{t \in \operatorname{Stab}_H(x_1)} \chi_{\mathcal{B}}(s) \chi_{\mathcal{F}}(ht^{-1}sg) ds \\ &= \sum_{h \in H/\operatorname{Stab}_H(x_1)} \int_{\operatorname{Stab}_G(x_1)} \sum_{t \in \operatorname{Stab}_H(x_1)} \chi_{\mathcal{B}}(s) \chi_{\mathcal{F}}(ht^{-1}sg) ds \\ &= \int_{\operatorname{Stab}_G(x_1)} \chi_{\mathcal{B}}(s) \sum_{h \in H} \chi_{\mathcal{F}}(hsg) ds \\ &= \int_{\operatorname{Stab}_G(x_1)} \chi_{\mathcal{B}}(s) ds \\ &= \int_{\operatorname{Stab}_G(x_1)} \chi_{\mathcal{B}}(s) ds \\ &= \sup(\mathcal{B}) \\ &= \operatorname{vol}(\mathcal{B}) \\ &= \operatorname{vol}(\operatorname{Stab}_H(x_1) \setminus \operatorname{Stab}_G(x_1)). \end{split}$$

2. Application to ideal class group of quadratic number fields

Fix a fundamental discriminant D and let $K = \mathbb{Q}(\sqrt{D})$. In class, we constructed a $\operatorname{GL}_2(\mathbb{Z})$ -equivariant bijection

 $K^{\times} \setminus \{\mathbb{Z}\text{-bases } (\omega_1, \omega_2) \text{ of fractional ideals of } K\} \longleftrightarrow \mathcal{V}_{\operatorname{disc}=D}(\mathbb{Z}).$

Using the same formula, we can extend it to a $GL_2(\mathbb{R})$ -equivariant bijection

$$(K \otimes \mathbb{R})^{\times} \setminus \{\mathbb{R}\text{-bases } (\omega_1, \omega_2) \text{ of } K \otimes \mathbb{R}\} \longleftrightarrow \mathcal{V}_{\operatorname{disc}=D}(\mathbb{R})$$

The first bijection proves that for any $f \in \mathcal{V}_{\text{disc}=D}(\mathbb{Z})$ corresponding to a fractional ideal $I = \langle \omega_1, \omega_2 \rangle$, we have

 $\operatorname{Stab}_{\operatorname{GL}_2(\mathbb{Z})}(f) \cong \{ \alpha \in K^{\times} \mid \alpha I = I \} = \mathcal{O}_K^{\times}.$

The second bijection proves that for any $f \in \mathcal{V}_{\text{disc}=D}(\mathbb{R})$ we have

 $\operatorname{Stab}_{\operatorname{GL}_2(\mathbb{R})}(f) \cong (K \otimes \mathbb{R})^{\times}.$

Letting $\operatorname{GL}_2^{\pm 1}(\mathbb{R})$ be the set of $M \in \operatorname{GL}_2(\mathbb{R})$ with $\det(M) = \pm 1$, we get

$$\operatorname{Stab}_{\operatorname{GL}_{2}^{\pm 1}(\mathbb{R})}(f) \cong (K \otimes \mathbb{R})^{\operatorname{Nm}=\pm 1}$$

the set of $\alpha \in (K \otimes \mathbb{R})^{\times}$ with $\operatorname{Nm}_{K \otimes \mathbb{R} \mid \mathbb{R}}(\alpha) = \pm 1$.

If D < 0, we have $K \otimes \mathbb{R} \cong \mathbb{C}$, so this is the group S^1 of complex numbers on the unit circle. For example, endow this group with the "standard" Haar measure such that $vol(S^1) = 2\pi$. Then,

$$\operatorname{vol}(\operatorname{Stab}_{\operatorname{GL}_2(\mathbb{Z})}(f) \setminus \operatorname{Stab}_{\operatorname{GL}_2^{\pm 1}(\mathbb{R})}(f)) = \operatorname{vol}(\mathcal{O}_K^{\times} \setminus (K \otimes \mathbb{R})^{\operatorname{Nm} = \pm 1}) = \frac{2\pi}{\# \mathcal{O}_K^{\times}}.$$

If D > 0, we have $K \otimes \mathbb{R} \cong \mathbb{R} \times \mathbb{R}$, so this is the group of $(\alpha_1, \alpha_2) \in \mathbb{R}^{\times} \times \mathbb{R}^{\times}$ with $\alpha_1 \alpha_2 = \pm 1$ (isomorphic to $\mathbb{R}^{\times} \times \{\pm 1\}$). Endowing this group with the "standard" Haar measure (product of the standard Haar measure dx/|x| on \mathbb{R}^{\times} and the counting measure on $\{\pm 1\}$), we get

 $\operatorname{vol}(\operatorname{Stab}_{\operatorname{GL}_2(\mathbb{Z})}(f) \setminus \operatorname{Stab}_{\operatorname{GL}_2^{\pm 1}(\mathbb{R})}(f)) = \operatorname{vol}(\mathcal{O}_K^{\times} \setminus (K \otimes \mathbb{R})^{\operatorname{Nm} = \pm 1}) = R_K,$

the regulator of K.

We apply section 1 with $X = \mathcal{V}_{\text{disc}=D}(\mathbb{R})$, $G = \text{GL}_2^{\pm 1}(\mathbb{R})$, $H = \text{GL}_2(\mathbb{Z})$. For x_0 , take for example the quadratic form $\frac{\sqrt{-D}}{2} \cdot (X^2 + Y^2)$ if D < 0 and the quadratic form $\sqrt{D} \cdot XY$ if D > 0. For \mathcal{F} , take for example the restriction to $\text{GL}_2^{\pm 1}(\mathbb{R})$ of Minkowski's fundamental for the action of $\text{GL}_2(\mathbb{Z})$ on $\text{GL}_2(\mathbb{R})$ if D < 0, and its transpose inverse for D > 0 (makes the computation simpler).

Then, Lemma 1 tells you that summing $\chi_{\mathcal{A}}(f)$ over elements f of $\mathcal{V}_{\text{disc}=D}(\mathbb{Z})$ gives you the sum over all ideal classes of K of $2\pi/\#\mathcal{O}_K^{\times}$ if D < 0 and of R_K if D > 0. And the characteristic function $\chi_{\mathcal{A}}$ is sufficiently nice that you can estimate this sum using a volume computation.