Math 286X: Arithmetic Statistics Spring 2020 Lattices and maximal extensions

Let R be a Dedekind domain with field of fractions K. By a prime \mathfrak{p} , we mean a nonzero prime ideal of R. For any prime \mathfrak{p} , denote the localization of R at \mathfrak{p} by $R_{\mathfrak{p}}$, the \mathfrak{p} -adic completion of R by $\hat{R}_{\mathfrak{p}}$, and the \mathfrak{p} -adic completion of K by $\hat{K}_{\mathfrak{p}}$. (In class, we denoted the completions by $R_{\mathfrak{p}}$ and $K_{\mathfrak{p}}$.) A full R-lattice in K^n is a finitely generated R-submodule $\Lambda \subseteq K^n$ whose elements span the K-vector space K^n . (This is equivalent to $\Lambda \otimes_R K \cong K^n$. It is also equivalent to the assumption that $aR^n \subseteq \Lambda \subseteq bR^n$ for some $a, b \in K^{\times}$.) For example, the full R-lattices in K are exactly the (nonzero)

1

Localization

fractional ideals of R.

If $T_{\mathfrak{p}}$ is a subset of $R_{\mathfrak{p}}^n$ for all \mathfrak{p} , we write $\bigcap_{\mathfrak{p}} T_{\mathfrak{p}}$ for the set of $x \in K^n$ such that $x \in T_{\mathfrak{p}}$ for all \mathfrak{p} .

Theorem 1 ([Rei03, Theorems 4.21, 4.22]). Consider the set of full *R*lattices Λ in K^n and the set of tuples $(\Lambda_{\mathfrak{p}})_{\mathfrak{p}}$, where $\Lambda_{\mathfrak{p}}$ is a full $R_{\mathfrak{p}}$ -lattice in $K_{\mathfrak{p}}^n$ for all \mathfrak{p} and $\Lambda_{\mathfrak{p}} = R_{\mathfrak{p}}^n$ for almost all \mathfrak{p} . We then obtain a bijection

$$\begin{split} \{\Lambda\} & \longleftrightarrow \quad \{(\Lambda_{\mathfrak{p}})_{\mathfrak{p}}\}, \\ \Lambda & \longmapsto \quad (\Lambda \otimes_R R_{\mathfrak{p}})_{\mathfrak{p}}, \\ & \bigcap_{\mathfrak{p}} \Lambda_{\mathfrak{p}} & \longleftarrow \quad (\Lambda_{\mathfrak{p}})_{\mathfrak{p}}. \end{split}$$

For example, a fractional ideal \mathfrak{a} corresponds to the tuple $(\mathfrak{p}^{v_{\mathfrak{p}}(\mathfrak{a})})_{\mathfrak{p}}$ of fractional ideals of the localizations $R_{\mathfrak{p}}$. Also, note that $\Lambda \otimes_R R_{\mathfrak{p}} = R_{\mathfrak{p}} \cdot \Lambda = (R \setminus \mathfrak{p})^{-1} \cdot \Lambda \subset K^n$.

Proof. " \rightarrow is well-defined" Let $aR^n \subseteq \Lambda \subseteq bR^n$ as above. For all primes \mathfrak{p} with $v_{\mathfrak{p}}(a) = v_{\mathfrak{p}}(b) = 0$ (these are all but finitely many), we have $a, b \in R^{\times}_{\mathfrak{p}}$, so $R^n_{\mathfrak{p}} = aR^n_{\mathfrak{p}} \subseteq \Lambda \otimes_R R_{\mathfrak{p}} \subseteq bR^n_{\mathfrak{p}} = R^n_{\mathfrak{p}}$. Hence, $\Lambda \otimes_R R_{\mathfrak{p}} = R^n_{\mathfrak{p}}$ for almost all \mathfrak{p} .

- "← is well-defined" Note that $\mathfrak{p}^{a_{\mathfrak{p}}}R_{\mathfrak{p}}^{n} \subseteq \Lambda_{\mathfrak{p}} \subseteq \mathfrak{p}^{b_{\mathfrak{p}}}R_{\mathfrak{p}}^{n}$ for some $a_{\mathfrak{p}} \leq b_{\mathfrak{p}}$, where $a_{\mathfrak{p}} = b_{\mathfrak{p}} = 0$ for almost all \mathfrak{p} . Then, $\Lambda = \bigcap_{\mathfrak{p}} \Lambda_{\mathfrak{p}}$ satisfies $\prod_{\mathfrak{p}} \mathfrak{p}^{a_{\mathfrak{p}}}R^{n} \subseteq \Lambda \subseteq \prod_{\mathfrak{p}} \mathfrak{p}^{b_{\mathfrak{p}}}R^{n}$, so Λ is a full lattice in K^{n} .
- "← →= id" Let Λ as above. We need to show that $\bigcap_{\mathfrak{p}} (\Lambda \otimes_R R_{\mathfrak{p}}) = \Lambda$. The inclusion ⊇ is clear. To prove ⊆, take any $x \in \bigcap_{\mathfrak{p}} (\Lambda \otimes_R R_{\mathfrak{p}})$.

For each \mathfrak{p} , there exists some $a_{\mathfrak{p}} \in R \setminus \mathfrak{p}$ such that $a_{\mathfrak{p}}x \in \Lambda$. The set I of $b \in R$ such that $bx \in \Lambda$ forms an ideal. Since it isn't contained in any of the nonzero prime ideals \mathfrak{p} , we have I = (1), so $x \in \Lambda$.

"→ ◦ ←= id" Let (Λ_p)_p as above, and let Λ = ∩_p Λ_p. Clearly, Λ ⊗_R R_p ⊆ Λ_p. Again, $\mathfrak{p}^{a_p} R_\mathfrak{p}^n \subseteq \Lambda_\mathfrak{p} \subseteq \mathfrak{p}^{b_p} R_\mathfrak{p}^n$ for some $a_\mathfrak{p} \leq b_\mathfrak{p}$, where $a_\mathfrak{p} = b_\mathfrak{p} = 0$ for almost all \mathfrak{p} . Fix a prime \mathfrak{p} and let $x \in \Lambda_\mathfrak{p}$. For any \mathfrak{q} , let $c_\mathfrak{q}$ be the smallest nonnegative integer such that $\mathfrak{q}^{c_\mathfrak{q}} x \in \Lambda_\mathfrak{q}$. For almost all \mathfrak{p} , we have $c_\mathfrak{q} = 0$. By the Chinese remainder theorem, there exists some $t \in K^{\times}$ such that $v_\mathfrak{p}(t) = 0$ and such that $v_\mathfrak{q}(t) \ge c_\mathfrak{q}$ for all $\mathfrak{q} \neq \mathfrak{p}$. Then, $tx \in \Lambda = \bigcap_\mathfrak{q} \Lambda_\mathfrak{q}$. On the other hand, $t^{-1} \in R_\mathfrak{p}$, so indeed $x = t^{-1}tx \in \Lambda \otimes_R R_\mathfrak{p}$.

Theorem 2 ([Rei03, Theorem 11.2]). Let S be a degree n extension of R. Then, S is a maximal extension of R if and only if $S \otimes_R R_p$ is a maximal extension of R_p for all p.

- Proof. " \Rightarrow " Let S be a maximal extension of R. For every \mathfrak{p} , let $S'_{\mathfrak{p}} \supseteq S \otimes_R R_{\mathfrak{p}}$ be a degree n extension of $R_{\mathfrak{p}}$, and let $S'_{\mathfrak{p}} = S \otimes_R R_{\mathfrak{p}}$ for almost all \mathfrak{p} . Then, $S \subseteq \bigcap_{\mathfrak{p}} S'_{\mathfrak{p}} \subset S \otimes_R K$ is an R-lattice of rank n, which is closed under multiplication. Hence, $\bigcap_{\mathfrak{p}} S'_{\mathfrak{p}} \supseteq S$ is a degree n extension of R. Since S is maximal, this implies that $\bigcap_{\mathfrak{p}} S'_{\mathfrak{p}} = S$. In follows that $S'_{\mathfrak{p}} = S \otimes_R R_{\mathfrak{p}}$ for all \mathfrak{p} . Hence, each $S \otimes_R R_{\mathfrak{p}}$ is a maximal extension of $R_{\mathfrak{p}}$.
- "⇐" Assume that $S \otimes_R R_{\mathfrak{p}}$ is a maximal extension of $R_{\mathfrak{p}}$ for all \mathfrak{p} . Let $S' \supseteq S$ be a degree *n* extension of *R*. Then, $S' \otimes_R R_{\mathfrak{p}} \supseteq S \otimes_R R_{\mathfrak{p}}$ is also a degree *n* extension of $R_{\mathfrak{p}}$. By maximality, $S' \otimes_R R_{\mathfrak{p}} = S \otimes_R R_{\mathfrak{p}}$ for all \mathfrak{p} . But then, S' = S. Hence, *S* is a maximal extension of *R*. \Box

2 Completion

If $T_{\mathfrak{p}}$ is a subset of $\hat{R}_{\mathfrak{p}}^n$ for all \mathfrak{p} , we write $\bigcap_{\mathfrak{p}} T_{\mathfrak{p}}$ for the set of $x \in K^n$ such that $x \in T_{\mathfrak{p}}$ for all \mathfrak{p} .

Theorem 3 ([Rei03, Theorem 5.3]). Consider the set of full R-lattices Λ in K^n and the set of tuples $(\Lambda_{\mathfrak{p}})_{\mathfrak{p}}$, where $\Lambda_{\mathfrak{p}}$ is a full $\hat{R}_{\mathfrak{p}}$ -lattice in $\hat{K}^n_{\mathfrak{p}}$ for all \mathfrak{p} and $\Lambda_{\mathfrak{p}} = \hat{R}^n_{\mathfrak{p}}$ for almost all \mathfrak{p} . We then obtain a bijection

$$\begin{split} \{\Lambda\} & \longleftrightarrow \{(\Lambda_{\mathfrak{p}})_{\mathfrak{p}}\}, \\ \Lambda & \longmapsto (\Lambda \otimes_R \hat{R}_{\mathfrak{p}})_{\mathfrak{p}}, \\ & \bigcap_{\mathfrak{p}} \Lambda_{\mathfrak{p}} & \longleftarrow (\Lambda_{\mathfrak{p}})_{\mathfrak{p}}. \end{split}$$

Proof. Since the \mathfrak{p} -adic completion of $R_{\mathfrak{p}}$ is the same as the \mathfrak{p} -adic completion of R, Theorem 1 shows that it suffices to consider local rings R, i.e. Dedekind domains with only one prime \mathfrak{p} . Both maps are well-defined.

- " $\leftarrow \circ \rightarrow =$ id" Let Λ as above. Since R is a principal ideal domain, the R-lattice Λ is free. Performing a change of basis, we may assume that $\Lambda = R^n \subset K^n$. We then need to show that $\{x \in K^n \mid x \in \hat{R}_p\} = R^n$, which is clear since for $t \in K, t \in \hat{R}_p$ and $t \in R$ are both equivalent to $v_p(t) \ge 0$.
- " $\rightarrow \circ \leftarrow = \operatorname{id}$ " Let $\Lambda_{\mathfrak{p}} \subset \hat{K}_{\mathfrak{p}}$ as above, and let $\Lambda = \{x \in K^n \mid x \in \Lambda_{\mathfrak{p}}\}$. Let $\mathfrak{p}^a \hat{R}^n_{\mathfrak{p}} \subseteq \Lambda_{\mathfrak{p}}$. We then have $\mathfrak{p}^a R^n \subseteq \Lambda$, so $\mathfrak{p}^a \hat{R}^n_{\mathfrak{p}} \subseteq \Lambda \otimes_R \hat{R}_{\mathfrak{p}}$. Furthermore, for any $x \in \Lambda_{\mathfrak{p}}$, there exists some $y \in K^n$ such that $x - y \in \mathfrak{p}^a \hat{R}^n_{\mathfrak{p}}$. Then, we also have $y \in \Lambda_{\mathfrak{p}}$, so $y \in \Lambda$. But since $\mathfrak{p}^a \hat{R}^n_{\mathfrak{p}} \subseteq \Lambda \otimes_R \hat{R}_{\mathfrak{p}}$, it follows that $x \in \Lambda \otimes_R \hat{R}_{\mathfrak{p}}$.

Theorem 4 ([Rei03, Corollary 11.6]). Let S be a degree n extension of R. Then, S is a maximal extension of R if and only if $S \otimes_R \hat{R}_p$ is a maximal extension of \hat{R}_p for all p.

Proof. This follows exactly like Theorem 2.

References

[Rei03] I. Reiner. Maximal orders. Vol. 28. London Mathematical Society Monographs. New Series. Corrected reprint of the 1975 original, With a foreword by M. J. Taylor. The Clarendon Press, Oxford University Press, Oxford, 2003, pp. xiv+395. ISBN: 0-19-852673-3.