Math 223a: Algebraic Number Theory Fall 2020

Problem set #9

due Friday, November 6 at 10:30am

Problem 1. Let $p \ge 3$ be any odd prime and let $n \ge 4$. Show that \mathbb{Q}_p doesn't have a Galois extension with Galois group S_n . (Feel free to look up the subgroup structure of S_n online.)

Problem 2. Let K be a local field with residue field \mathbb{F}_q .

- a) Let $n \ge 1$. Show that K has a totally and tamely ramified Galois extension with Galois group $\mathbb{Z}/n\mathbb{Z}$ if and only if $n \mid q-1$.
- b) Let $n \ge 3$. Show that K has a tamely ramified Galois extension whose Galois group is the dihedral group of degree 2n if and only if $n \mid q+1$.¹

Problem 3. Let $n \ge 1$ and let K be a local field of characteristic 0. Show that K has only finitely many field extensions of degree n.

Problem 4. Let $K \subseteq \mathbb{Q}(\zeta_{\infty})$ be a finite field extension of \mathbb{Q} . For any prime p, let $k = k_p$ be the smallest nonnegative integer such that $I^k(\mathfrak{p}|p) = 1$, where \mathfrak{p} is a prime ideal in \mathcal{O}_K dividing p. (In particular, $k_p = 0$ if and only if p is unramified.) Show that the conductor of K is $\prod_p p^{k_p}$.

¹*Hint:* For " \Leftarrow ", use an explicit construction. (No need for class field theory!)